Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна

Должность: Проректор по**учили саттегр стівю НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ** Дата подписания: 27.10.2025 13:43:30

Уникальный программный ключ:

РОССИЙСКОЙ ФЕДЕРАЦИИ

b066544bae1e449cd8bfce392f7224a676a271b2

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ОБОРУДОВАНИЯ ПИЩЕВЫХ ПРОИЗВОДСТВ

УТВЕРЖДАЮ Проректор по учебно-методической работе $_{\text{(подпись)}}$ В. Крылова $_{\text{(подпись)}}$ 2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б.1.О.22 ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ

Укрупненн	ая группа направлений подготовки <u>15.00.00 Машиностроение</u>
	(код, наименование)
Программа	высшего образования - программа бакалавриата
Направлени	ие подготовки 15.03.02 Технологические машины и оборудование
	(код, наименование)
Профиль _	<u>Инженерия технических систем пищевой промышленности</u>
	(наименование)
Институт _	пищевых производств
Форма обуч	чения, курс:
	иа обучения, 2, 3 курс (план 2025)

Рабочая программа адаптирована для лиц с умеренными нарушениями функций зрения, слуха и речи

заочная форма обучения, 3 курс (план 2025)

Донецк 2025 Рабочая программа учебной дисциплины «Процессы и аппараты пищевых производств» для обучающихся по направлению подготовки 15.03.02 Технологические машины и оборудование, профилю: Инженерия технических систем пищевой промышленности, разработанная в соответствии с учебным планом, утвержденным Ученым советом Университета:

- в 2025 г. для очной формы обучения;
- в 2025 г. для заочной формы обучения

Разработчик: <u>Парамонова В.А., заведующий кафедрой, канд. техн. наук, доценд</u> (ФИО, должность, учёная степень, учёное звание)

Рабочая программа утверждена на заседании кафедры <u>оборудования пищевых</u> <u>производств</u>

Протокол от «<u>24</u>» февраля 2025 года № <u>23</u>

Зав. кафедрой оборудования пищевых производств

(подпись) КАФЕДРА ОБОРУДОВАНИЯ В.А. Парамонова (инициалы, фамилия)

СОГЛАСОВАНО:

Директор института пищевых производств

(подпись)

Д.К. Кулешов

(инициалы, фамилия)

« <u>26</u>» февраля 2025 года

ОДОБРЕНО

Учебно-методическим советом ФГБОУ ВО «ДОННУЭТ»

(подпись)

Протокол от «<u>26</u>» февраля 2025 года № <u>7</u>

Председатель

<u>Л.В. Крылова</u>

(инициалы, фамилия)

© Парамонова В.А., 2025

© ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», 2025

1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

	УЧЕБНОИ ДИСЦИПЛ	Характеристика учебной дисциплины				
Наименование показателя	Наименование укрупнённой группы / Направление подготовки / Профиль / Программа	очная форма обучения	заочная форма обучения			
Количество зачётных единиц – 6	Укрупнённая группа направлений подготовки 15.00.00 Машиностроение (код, название)	Обязательная час	еть			
Модулей – 2 Содержательных модулей – 4	Направление подготовки 15.03.02 Технологические машины и оборудование	Год подготовки: 2, 3-й	3-й			
Индивидуальные научно- исследовательские		Семестр 4, 5-й Лекции				
задания: выполнение внеауд. контр. раб., написание статей, рефераты и др.	Профиль: <u>«Инженерия технических</u> <u>систем пищевой</u> промышленности»	4 сем 32 ч. 5 сем 32 ч. Практические, се	3 год 3 - 6 час. 3 год. Л - 6 час. еминарские занятия			
Общее количество часов – 216		Лабораторные ра 4 сем 30 ч. 5 сем 16 ч.	3 год 3 - 6 час. 3 год. Л - 6 час.			
Количество часов в неделю для очной формы обучения: 4 сем.: аудиторных — 4 самостоятельной и индивидуальной работы обучающегося — 3			<u> </u>			
5 сем.: аудиторных — 3 самостоятельной и индивидуальной работы обучающегося — 3	бакалавриат	ИК – 2 ч, КЭ – 2 ч, Каттэк – 0,4 ч., Контроль – 27 ч. Форма пр атте (зачёт	ИК – 2 ч, КЭ – 2 ч, КЭ – 2 ч, Каттэк – 0,4 ч. Контроль – 8 ч. ромежуточной естации: г, экзамен)			

Примечания: 1. ТМК — текущий модульный контроль; ВПР — внеаудиторная письменная работа; КП - курсовой проект; 2 Соотношение количества часов аудиторных занятий к самостоятельной и индивидуальной работе составляет: о.ф.о.: 4-й семестр - 62/46; 5-й семестр — 48/60; з.ф.о.— 3 курс 3 - 12/96; 3 курс Л — 12/96.

2. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цели:

- формирование знаний, умений и навыков для анализа проблемных производственных ситуаций, связанных с гидромеханикой, тепломассообменом в технологических средах, анализом состояния и динамики показателей качества работы технологического оборудования, интенсификацией реализуемых процессов и разработкой технологических линий, включающих гидромеханические, тепловые и массообменные устройства при производстве продуктов питания.

Задачи:

- предоставление знаний об общих процессах, протекающих в различных пищевых производствах;
- изучение методов рационализации процессов и совершенствования аппаратов пищевых производств;
- ознакомление студентов с основными техническими проблемами, научными достижениями и современными тенденциями использования новых физических методов обработки пищевых продуктов.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина <u>Б.1.О.22 «Процессы и аппараты пищевых производств»</u> относится к основной *части ОПОП*.

Обеспечивающие дисциплины: «Химия», «Физика», «Высшая математика», «Сопротивление материалов», «Механика жидкости и газа».

Обеспечиваемые дисциплины: «Технологическое оборудование пищевых производств», «Механическое оборудование ресторанного хозяйства», «Тепловое оборудование ресторанного хозяйства», «Холодильное и торговое оборудование» и другие дисциплины профессиональной подготовки. Навыки, приобретенные студентами в процессе изучения учебной дисциплины «Процессы и аппараты пищевых производств» могут быть реализованы в процессе выполнения курсовых проектов и выпускной квалификационной работы.

Перед изучением дисциплины студенты должны

знать:

- физические и химические свойства и практическое значение веществ, используемых в пищевой промышленности;
 - фундаментальные понятия, законы и теории классической и современной физики;
 - современную научную аппаратуру, используемую в профессии;

уметь:

- применять на практике знания, полученные в курсах химии и физики;
- методиками современных химических и физико-химических методов определения физико-химических свойств металлов, неметаллов, различных сплавов, определения скорости прохождения различных химических реакций, лежащих в основе технологических процессов, расчета тепловых эффектов процессов;
 - формировать цель проведения физического эксперимента;
 - анализировать конкретные физические явления и процессы;
 - определять точность измеряемой физической величины;

владеть:

- современными методами физических исследований;
- современной научной и технической аппаратурой;
- приемами и методами решения конкретных задач из разных областей физики;
- навыками разработки конструкторской документации.

4. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения учебной дисциплины обучающийся должен обладать такими и компетенциями:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
1	2
ОПК-1. Способен применять	ИДК-3 _{ОПК-1} Применяет методы математического
естественнонаучные и общеинженерные	анализа и моделирования для обработки данных и
знания, методы математического	моделирования объектов профессиональной
анализа и моделирования в	деятельности.
профессиональной деятельности	
ОПК-13. Способен применять	ИДК-1 _{ОПК-13} Демонстрирует знание стандартных
стандартные методы расчета при	методов расчета деталей и узлов технологических
проектировании деталей и узлов	машин и оборудования
технологических машин и	ИДК-2 _{ОПК-13} Использует нормативно-техническую
оборудования	и справочную литературу в процессе
	проектирования деталей и узлов технологических
	машин и оборудования

В результате изучения учебной дисциплины обучающийся должен:

знать:

- основные закономерности протекания процессов пищевой промышленности;
- методики расчета процессов и аппаратов пищевой промышленности;

уметь:

- выявлять резервы повышения интенсивности и экономичности процессов;
- применять навыки проектирования процессов и аппаратов пищевой промышленности;

владеть:

- знаниями, умениями и навыками для анализа проблемных производственных ситуаций, связанных с гидромеханикой, тепломассообменом в технологических середах, анализом состояния и динамики показателей качества работы технологического оборудования, интенсификацией реализуемых процессов и разработкой технологических линий, включающих гидромеханические, тепловые и массообменные устройства при производстве продуктов питания;
 - способностью к систематическому изучению научно-технической информации.

5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МОДУЛЬ 1.

Смысловые модули и темы учебной дисциплины:

Содержательный модуль 1. Основные положения и научные основы дисциплины.

- Тема 1. Введение. Общие принципы анализа и расчета процессов и аппаратов
- Тема 2. Основы рационального конструирования аппаратов
- Тема 3. Моделирование процессов и аппаратов

Содержательный модуль 2. Механические и гидромеханические процессы

- Тема 4. Характеристика дисперсных систем
- Тема 5. Получение однородных и гетерогенных систем
- Тема 6. Разделение неоднородных систем
- Тема 7. Механические процессы

Содержательный модуль 3. Тепловые процессы

- Тема 8. Общие сведения о тепловых процессах
- Тема 9. Нагрев. Теплообменные аппараты
- Тема 10. Выпаривание
- Тема 11. Конденсация
- Тема 12. Электрофизические методы обработки
- пищевых продуктов

Содержательный модуль 4. Массообменные процессы

- Тема 13. Теоретические основы массообменных процессов
- Тема 14. Сорбционные процессы
- Тема 15. Экстрагирование
- Тема 16. Сушка пищевых материалов
- Тема 17. Ректификация
- Тема 18. Процессы растворения и набухания
- Тема 19. Процессы кристаллизации

МОДУЛЬ 2. Курсовой проект.

6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

о. Стрктуга учевной дисциплины	Количество часов											
	Очная форма обучения			Заочная форма обучения								
			в том числе			Всего	в том числе					
Названия содержательных модулей и тем	Всего	\mathcal{I}^1	Π^2	Лаб ³	Инд. ⁴	CP ⁵	Beero	Π^1	Π^2	Лаб ³	Инд. ⁴	CP^5
1	2	3	4	5	6	7	8	9	10	11	12	13
		Моду										
Содержательный модуль 1.	Основнь	је пол	поже	ния и н	аучные	основы	дисципл	ины				
Тема 1. Введение. Общие принципы анализа и расчета процессов и аппаратов	6,15	4				2,15	6,15	1				5,15
Тема 2. Основы рационального конструирования аппаратов	14	4		4		6	14	1		2		11
Тема 3. Моделирование процессов и аппаратов	14	4		4		6	14	1		2		11
Итого по содержательному модулю 1	34,15	12	0	8	0	14,15	34,15	3	0	4	0	27,15
Содержательный модуль	2. Mexa	ниче	ские	и гидро	механи	ческие і	процессі	Ы			-	
Тема 4. Характеристика дисперсных систем	8	4				4	8	0,5				7,5
Тема 5. Получение однородных и гетерогенных систем	14	4		8		2	14	1				13
Тема 6. Разделение неоднородных систем	18	8		8		2	18	0,5		2		15,5
Тема 7. Механические процессы	14	4		6		4	12,7	1				11,7
Итого по содержательному модулю 2	54	20	0	22	0	12	52,7	3	0	2	0	47,7
Kamm	1,6				0,9		0,9				1,8	
Каттэк	0,25				0,25		0,25				0,25	
Контроль							2				2	
Модуль 2 ИНИР (курсовой проект; работа на про		сущес	твля	ется на	протяж			тров,	защи	та - во в	тором)	
Курсовой проект. 1 семестр изучения дисциплины	18					18	18					18
Всего часов за 1 семестр	108	32	0	30	1,15	44,15	108	6	0	6	4,05	92,85
		Моду										
Содержател			3. T	епловы	е проце		T			1		
Тема 8. Общие сведения о тепловых процессах	2,5	2				0,5	6	0,5				5,5
Тема 9. Нагрев. Теплообменные аппараты	6,5	4		2		0,5	8,7	0,5		1		7,2
Тема 10. Выпаривание	6,5	4		2		0,5	8	0,5		1		6,5
Тема 11. Конденсация	2,5	2				0,5	4	0,5				3,5

1	2	3	4	5	6	7	8	9	10	11	12	13
Тема 12. Электрофизические методы обработки	2,5	2				0,5	4	0,5				3,5
Итого по содержательному модулю 3	20,5	14	0	4	0	2,5	30,7	2,5	0	2	0	26,2
Содержательн	ый моду	ль 4.	Macc	ообмен	нные про	оцессы						
Тема 13. Теоретические основы массообменных процессов	2,5	2				0,5	4	0,5				3,5
Тема 14. Сорбционные процессы	2,5	2				0,5	4	0,5				3,5
Тема 15. Экстрагирование	6,5	4		2		0,5	8	0,5				7,5
Тема 16. Сушка пищевых материалов	10,5	4		6		0,5	12	0,5		2		9,5
Тема 17. Ректификация	6,5	2		4		0,5	8	0,5		2		5,5
Тема 18. Процессы растворения и набухания	3	2				1	4	0,5				3,5
Тема 19. Процессы кристаллизации	3	2				1	4	0,5				3,5
Итого по содержательному модулю 4	34,5	18	0	12	0	4,5	44	3,5	0	4	0	36,5
Kamm	3,6				3,6		2,9				2,9	
ИК	2				2		2				2	
КЭ	2				2		2				2	
Каттэк	0,4				0,4		0,4				0,4	
Контроль	27				27		8				8	
Модуль 2 ИНИР (курсовой проект; работа на проектом осуществляется на протяжении двух семестров, защита - во втором)												
Курсовой проект. 2 семестр изучения дисциплины	18					18	18					18
Всего часов за 2 семестр	108	32	0	16	35	25	108	6	0	6	15,3	80,7
Всего часов по содержательным модулям курса	216	64	0	46	36,15	69,15	216	12	0	12	19,35	173,55

Примечания: 1. Л – лекции, 2. П.– практические (семинарские) занятия; 3. Лаб – лабораторные занятия; 4. Инд – индивидуальные консультации с педагогическими работниками; 5. СРС – самостоятельная работа; 6. Катт – контактная работа на аттестацию в период обучения; 7. Каттэк – контактная работа на аттестацию в период экзаменационной сессии; 8. КЭ – консультации перед экзаменами; 9. Контроль – часы на проведение контрольных мероприятий (з.ф.о.).

7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

	William Chillian Chillian in the Chillian Chilli						
№ п/п	Название темы	Колич	ество часов				
		Очная форма	Заочная форма				
	Не предусмотрены						
	Всего:						

8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

№		Количество часов		
п/п	Название темы	Очная форма	Заочная форма	
1	Контрольно-измерительные приборы.	4	2	
2	Исследование процесса перемешивания	4		
3	Исследование процесса псевдоожижения	6	2	
4	Исследование процесса осаждения	6	2	
5	Исследование процесса фильтрования	6		
6	Исследование процесса прессования	4		
	Итого за 1 семестр изучения дисциплины	30	6	
1	Исследование процесса вакуумвыпаривания	4	2	
2	Исследование процесса конвективной сушки	4	2	
3	Исследование процесса сушки в псевдоожиженном слое	2		
4	Исследование процесса перегонки	4	2	
5	Исследование процесса ректификации	2		
•	Итого за 2 семестр изучения дисциплины	16	6	
	Всего:	46	12	

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

$N_{\underline{0}}$	Неороную тому	Количес	ство часов
п/п	Название темы	Очная форма	Заочная форма
1	2	3	4
	1 семестр изучения дисциплины	44,15	92,85
1	Тема 1. Введение. Общие принципы анализа и расчета процессов и аппаратов	2,15	5,15
2	Тема 2. Основы рационального конструирования аппаратов	6	11
3	Тема 3. Моделирование процессов и аппаратов	6	11
4	Тема 4. Характеристика дисперсных систем	4	7,5
5	Тема 5. Получение однородных и гетерогенных систем	2	13
6	Тема 6. Разделение неоднородных систем	2	15,5
7	Тема 7. Механические процессы	4	11,7
	Курсовой проект. 1 семестр изучения дисциплины (начало работы)	18	18
	2 семестр изучения дисциплины	25	80,7
8	Тема 8. Общие сведения о тепловых процесах	0,5	5,5
9	Тема 9. Нагрев. Теплообменные аппараты	0,5	7,2
10	Тема 10. Выпаривание	0,5	6,5
11	Тема 11. Конденсация	0,5	3,5
12	Тема 12. Электрофизические методы обработки пищевых продуктов	0,5	3,5
13	Тема 13. Теоретические основы массообменных процессов	0,5	3,5

1	2	3	4
14	Тема 14. Сорбционные процессы	0,5	3,5
15	Тема 15. Экстрагирование	0,5	7,5
16	Тема 16. Сушка пищевых материалов	0,5	9,5
17	Тема 17. Ректификация	0,5	5,5
18	Тема 18. Процессы растворения и набухания	1	3,5
19	Тема 19. Процессы кристаллизации	1	3,5
	Курсовой проект. 2 семестр изучения дисциплины	10	10
	(завершение работы)	18	18
	Всего:	69,15	173,55

10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Рабочая программа адаптирована для лиц с умеренными нарушениями функций зрения, слуха и речи.

В ходе реализации учебной дисциплины используются такие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- лекции и задания практикума оформляются в виде электронных документов, которые могут быть увеличены до удобного пользователю шрифта (для просмотра используются программы для чтения файлов *.pdf и *.doc, *.docx);
- письменные задания выполняются на компьютере со специализированным программным обеспечением или в тетради;
- для слабовидящих, при необходимости, предоставляется звукоусиливающая аппаратура индивидуального пользования; возможно также использование собственной звукоусиливающей аппаратуры индивидуального пользования;
- для слабослышащих, при необходимости, предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
- текущий модульный контроль осуществляется по результатам выполненного практикума и тестирования на компьютере;
- зачет с оценкой является результатом набранных студентом на протяжении 1 семестра изучения баллов; при необходимости повышения баллов студент может ответить на дополнительные вопросы в письменном виде (не более 20 баллов);
- экзамен является результатом набранных студентом на протяжении 2 семестра изучения баллов; при необходимости повышения баллов студент может ответить на дополнительные вопросы в письменном виде (не более 20 баллов);
- при необходимости, предусматривается увеличение времени для подготовки ответа;
- процедура проведения зачета с оценкой и экзамена для обучающихся устанавливается с учетом их индивидуальных психофизических особенностей.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации.

11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ (выполнение курсового проекта; также индивидуальные задания выдают для студентов, находящихся на индивидуальном графике, и студентов, желающих повысить балл)

К индивидуальным заданиям отнесено выполнение разделов курсового проекта (ПЗ, ГЧ), рефератов, контрольной работы и (или) расчетно-графической работы в соответствии с методическими указаниями для самостоятельной работы студентов, написание научных работ на конференции и др. виды работ по темам курса.

Индивидуальные задания отображают содержание дисциплины и соответствуют ее структуре (содержательным модулям и входящим в них темам, их логической последовательности).

Индивидуальные задания предполагают знание принципов, содержания, понятийного аппарата – глоссария дисциплины и, вместе с тем, использование эвристического потенциала мышления.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ РЕФЕРАТОВ

- 1. Применение отстойников в производстве пищевых продуктов;
- 2. Обзор оборудования для фильтрования пищевых продуктов;
- 3. Методы интенсификации процесса фильтрования;
- 4. Применение центрифуг в пищевой промышленности;
- 5. Сепараторы, их устройство и применение;
- 6. Гомогенизаторы молока;
- 7. Процесс формования в пищевой промышленности;
- 8. Конструкции прессов и области их применения;
- 9. Пресса для производства макаронных изделий;
- 10. Пресса для производства соков;
- 11. Сортировка;
- 12. Сортировка по размеру;
- 13. Сортировка по плотности материала;
- 14. Сортировка по электрофизическим свойствам;
- 15. Конструкции центрифуг;
- 16. Рабочие органы;
- 17. Виды мельниц;
- 18. Применение процесса измельчения в пищевой промышленности;
- 19. Процесс смешивания сыпучих материалов.
- 20. Теплообменная аппаратура;
- 21. Выпарные аппараты;
- 22. Методы интенсификации процесса теплообмена;
- 23. Методы интенсификации процесса выпаривания;
- 24. Стерилизация и пастеризация;
- 25. Разделение сложных жидких систем;
- 26. Сушка пищевых продуктов;
- 27. Способы переработки отходов пищевых производств;
- 28. Пищевые порошки.

КУРСОВОЙ ПРОЕКТ

Курсовой проект является итоговой зачетной работой студента по дисциплине, направленной на решение конкретных задач по расчету, конструированию и технико-экономическому обоснованию аппарата или установки.

Тематика курсового проектирования охватывает несколько важнейших разделов курса. Для студентов, обучающихся без отрыва от производства, задания на курсовой проект выдаются в зависимости от характера производственной деятельности студента и должны включать элементы реального проекта, т.е. разработку отдельных узлов аппарата,

механизацию загрузочных и разгрузочных операций, обоснование замены работающего аппарата на производстве другим, более прогрессивным, и т.д.

На кафедре широко практикуется внедрение элементов научного исследования при выполнении студентами курсового проекта. Эта тенденция всегда заслуживала и заслуживает одобрения, так как прививает студентам навыки творческого решения поставленных задач, значительно повышает интерес к выполняемому проекту.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ КУРСОВОГО ПРОЕКТА

- Тема 1. Кожухотрубный вертикальный теплообменник ТНВ.
- Тема 2. Кожухотрубный горизонтальный теплообменник ТНГ.
- Тема 3. Теплообменник кожухотрубный горизонтальный.
- Тема 4. Змеевиковый теплообменник.
- Тема 5. Теплообменник пластинчатый четырехсекционный.
- Тема 6. Теплообменник пластинчатый трехсекционный.
- Тема 7. Выпарной аппарат с трубчатой поверхностью нагрева и центральной циркуляционной трубой.
- Тема 8. Выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой.
- Тема 9. Многокорпусная вакуум-выпарная установка.
- Тема 10. Вакуум-выпарной аппарат с инжектором.

12. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

Оценочные средства детализированы по видам работ в оценочных материалах по учебной дисциплине (утверждены на заседании кафедры).

Система оценивания по учебной дисциплине, изучаемой в очной форме обучения

1 семестр изучения дисциплины Форма контроля Максимальное количество баллов за одну работу всего Текущий контроль: - выполнение, оформление и защита лабораторных 10 60 работ №1-6; - тестирование (содержательный модуль №1); - тестирование (содержательный модуль №2); 20 20 При недоборе баллов студенты могут: 20 20 - подготовить рефераты (доклады, эссе) по выбранной 2 2 теме; 3 - тезисы на конференции; 3 - участие в олимпиаде, статьи и др. 10 10 100 Зачёт Промежуточная аттестация Итого за семестр 100

2 семестр изучения дисциплины

Форма контроля	Максимально	е количество
	бал	ЛОВ
	за одну работу	всего
Текущий контроль:		
- выполнение, оформление и защита лабораторных	5	25
работ №7-11;		
- тестирование (содержательный модуль №3);	10	10
- тестирование (содержательный модуль №4);	5	5
При недоборе баллов студенты могут:		
- подготовить рефераты (доклады, эссе) по выбранной		
теме;	2	2
- тезисы на конференции;	3	3
- участие в олимпиаде, статьи и др.	10	10
Промежуточная аттестация	экзамен	60
Итого за семестр	10	00

 тестирование (содержательный модуль №4); 	3	3
При недоборе баллов студенты могут:		
- подготовить рефераты (доклады, эссе) по выбра	анной	
теме;	2 3	2
- тезисы на конференции;	3	3
- участие в олимпиаде, статьи и др.	10	10
Промежуточная аттестация	экзамен	60
Итого за семестр	10	00
-		
ТЕСТОВЫЕ ЗАДАНИЯ д	ДЛЯ ПОДГОТОВКИ	
К ТЕКУЩЕМУ МОДУ	ЛЬНОМУ КОНТРОЛЮ	
1. Назовите критерий, характеризующий интенси	вность осаждения в поле і	центробежных
сил:		
а) Рейнольдса;	в) Грасгофа;	
б) Фруда;	г) Фурье.	
2. Осаждение не может осуществляться в:		
а) электрическом поле;	в) в поле поверхнос	гных сил;
б) центробежном поле;	г) в гравитационном	поле.
3. Ламинарный режим движения частиц происхо	дит в пределах:	
a) Re> 2;	в) 2 <re <6;<="" td=""><td></td></re>	
б) Re <2;	г) 2 <re <500.<="" td=""><td></td></re>	
4. Режим движения частиц в гравитационном пол	те определяется критерием	[:
	в) Рейнольдса;	
б) Лященко;	Э) Архимеда.	
5. Сопротивление среды не зависит от:	, <u>-</u>	
<u> </u>	направления падения дол	и;
б) формы частицы; г) гидростатич	еского давления столба жи	идкости.
б. Процесс осаждения протекает эффективнее пр	и следующих условиях:	
а) плотность дисперсной фазы меньше плотность	и дисперсионной среды;	
б) плотность дисперсной фазы больше плотность		
в) плотность дисперсной фазы и дисперсионной	среды одинаковы;	
г) плотность дисперсной фазы и дисперсионной	среды мало отличаются.	
7. Условие равновесия для равномерного движен	ия частиц имеет вид:	
	GT = P + Pa	
σ $G = A-R$	P = GT-PA	
8. Расчет отстойников сводится к:		
а) определение времени осаждения;		
б) определению скорости осаждения;		
в) определению площади поверхности осаждения	1 ;	
г) определению режима осаждения.		
9. Сопротивление инерционных сил называют:		
<u> </u>	в) пневматическим;	
б) кинематической;	г) гравитационным.	

- 10. В чем состоит физическая сущность критерия Архимеда?

а) критерий характеризует режим движ потоке;	ения жидкости с учетом сил внутреннего трения в			
	вие архимедовой силы, возникающей из-за разницы			
плотности среды, и сил вязкого трения;				
в) критерий характеризует соотношени				
г) критерий характеризует физические				
11. Осветленная жидкость называется:				
а) флегма;	в) декантат;			
б) осадок;	г) фильтрат.			
12. Осаждение в центробежном поле ос	/ ± ±			
а) центрифуг;	,			
б) отстойников лоткового типа;				
в) конических многоярусных отстойни	ков;			
г) фильтрационных чанов.				
13. Движущей силой процесса осажден	ия в поле гравитационных сил:			
а) разница между плотностью частиц и	-			
в) разница давлений;	г) разность потенциалов.			
14. интенсифицировать процесс осажде	ния можно следующим образом:			
а) уменьшив разницу между плотносты				
б) повысив температуру среды до допус				
в) уменьшив размеры частиц, осаждаю				
г) увеличив площадь поверхности осаж				
15. В каком среде процесс осаждения ч	астиц одинаковой формы и размеров будет			
осуществляться медленнее?				
а) трансформаторном масле;	в) глицерине;			
б) проточной воде;	г) бензине.			
16. На движение тела в жидкой среде в	пияет его форма. Доля которой формы осаждается			
медленнее?				
а) округлой;	в) пластинчатой;			
б) шаровидной;	г) в форме куба.			
17. В жидкостных неоднородных систе	м не относящиеся:			
а) пены;	в) суспензии;			
б) туманы;	г) эмульсии.			
18. При выполнении лабораторной рабо	оты необходимо было определить:			
а) скорость осаждения частиц;				
б) размеры частиц, осаждаются;				
в) режим движения частиц;				
г) все ответы дополняют друг друга.				
19. В каких величинах измеряется дина	мический коэффициент вязкости среды?			
a) $\Pi a.c;$ 6) $M^2/c;$	B) $\frac{\kappa \mathcal{J} \mathcal{H} \cdot \kappa \mathcal{E}}{K}$; Γ) $\frac{Bm}{M \cdot K}$.			
a) 11a.c, 0) M / c,	K , $\frac{1}{M \cdot K}$.			
20. Движущей силой процесса фильтров	зания являются:			
а) разница температур;	в) разница концентраций;			
б) разность давлений;	г) разность потенциалов.			
21.С увеличением слоя осадка сопротив	, <u>.</u>			
а) увеличивается;				
б) уменьшается;				
в) остается постоянным;				
г) не зависит от толщины слоя осадка.				
22. Процес фильтрования используют на	а предприятиях пищевых производств для разделения:			
а) растворов;	в) пен;			
б) эмульсий;	г) суспензий.			

- 23. Процесс фильтрации не может осуществляться при следующих условиях:
- а) при постоянной скорости и переменном давлении;
- б) при постоянном давлении и переменной скорости;
- в) при переменных скорости и давления;
- г) при постоянной скорости и давления.
- 24. В процессе фильтрации взвешенных в жидкости или газе твердых частиц не используются:
- а) фильтрование с образованием осадка на фильтрующей перегородке
- б) фильтрования без образования осадка на фильтрующей перегородке
- в) фильтрование без образования осадка с укупоркой пор;
- г) фильтрования с укупоркой пор и образованием осадка.
- 25. Сопротивление осадка пропорционален его:
- а) толщине;
- б) скорости фильтрации;
- в) сопротивления фильтрующей перегородки;
- г) вязкости жидкой фазы суспензии.
- 26. Сопротивление осадка постоянно увеличивается, потому что:
- а) увеличивается разность давлений;
- б) увеличивается площадь пор;
- в) увеличивается его толщина;
- г) изменяется вязкость суспензии.
- 27. В качестве фильтрующих перегородок не используют:
- а) полимерные пленки;
- б) бельтинг;
- в) пористую керамику;
- г) парафин.
- 28. Константы фильтрации характеризуют:
- а) гидравлическое сопротивление фильтрующей перегородки и слоя осадка;
- б) изменение скорости фильтрования;
- в) изменение количества получаемого фильтрата со временем;
- г) влияние разности давлений на процесс.
- 29. К фильтрам периодического действия не относятся:
- а) нутч-фильтры;
- б) фильтры с зернистой слоем;
- в) барабанные вакуум-фильтры;
- г) фильтр-прессы.
- 30. Песочный фильтр используется, когда:
- а) содержание твердой фазы суспензии небольшой и осадок не имеет большой ценности;
- б) содержание жидкой фазы суспензии небольшой и осадок не имеет большой ценности;
- в) содержание твердой фазы суспензии большой и осадок имеет ценность;
- г) содержание жидкой фазы суспензии большой и осадок не имеет ценности.
- 31. Основной задачей теории фильтрации является определение:
- а) экономичности процесса;
- б) скорости процесса;
- в) сопротивления процесса;
- г) толщины осадка.
- 32. Укупорочная фильтрация применяется для разделения неоднородных систем при условии, что:
- а) размеры частиц малы и количество их невелико;
- б) размеры частиц большие и содержатся в смеси в небольшом количестве;
- в) размеры частиц большие и содержатся в смеси в большом количестве;
- г) вязкость жидкости мала и содержит значительное количество взвесей.

- 33.Обратная скорость измеряется в:
- a) M^2/M^3 ;
- б) $c.m^2 / m^3$;
- в) кДж / (кг·°C)
- г) мл / с.

- 34. Сопротивление осадка зависит от:
- а) площади фильтрующих перегородки;
- б) типа насоса;
- в) вязкости жидкой фазы суспензии;
- г) производительности фильтра.
- 35. Перемешивание это:
- а) процесс создания дисперсной системы, состоящей из жидкости и распределенных в ней пузырьков газа;
- б) процесс измельчения жидких, твердых и газообразных веществ в жидкости, а также измельчения жидких и твердых веществ в газе с целью создания дисперсных систем;
- в) процесс многократного перемещения частиц неоднородного текущей среды относительно друг друга во всем объеме аппарата, протекает за счет импульса, переданного среде механической мешалкой, струей жидкости или газа;
- г) процесс приведения некоторого неподвижного слоя твердых частиц, лежащих на решетке, в взвешенное состояние, путем пропускания через него снизу вверх потока газа; при этом в слое происходит интенсивное перемешивание твердых частиц во многом напоминает кипящую жидкость.
- 36. На производстве перемешивания осуществляют с целью:
- а) обеспечение равномерного распределения и дробление до заданной дисперсности газа в жидкости или жидкости в жидкости, а также равномерного распределения твердых частиц в объеме жидкости;
- б) интенсификации нагрева или охлаждения масс, обрабатываются, а также обеспечения равномерного распределения температуры в объеме, перемешивается;
- в) интенсификации массообмена в среде, перемешивается, а также равномерного распределения растворенного вещества в массе, перемешиваются;
- г) все ответы дополняют друг друга.
- 37. Интенсивность действия аппарата с мешалкой это:
- а) возможность достижения некоторого заданного, строго определенного технологического результата (качества перемешивания) за определенное время (τ)
- б) возможность достижения заданного технологического результата (качества перемешивания) при расходе определенной работе (N \cdot τ)
- в) возможность достижения некоторого заданного, строго определенного технологического результата (качества перемешивания) при определенной частоте вращения мешалки (n) г) нет верного ответа.
- 38. Эффективность аппаратов с перемешивающим устройством это:
- а) возможность достижения некоторого заданного, строго определенного технологического результата (качества перемешивания) за определенное время (τ)
- б) возможность достижения заданного технологического результата (качества перемешивания) при расходе определенной работе $(N \cdot \tau)$
- в) возможность достижения некоторого заданного, строго определенного технологического результата (качества перемешивания) при определенной частоте вращения мешалки (n)
- г) нет верного ответа.
- 39. Циркуляционное перемешивание осуществляется:
- а) механическими мешалками;
- б) многократным перекачкой жидкости по контуру;
- в) за счет многократного перемешивания потоков на диафрагмах и рассекателях;
- г) в аппаратах, в которых в качестве устройств, перемешивают, обустраиваются газораспределительные перфорированные решетки, пористые плитки, барботеры или эрлифты.
- 40. Механическое перемешивание осуществляется:

- а) механическими мешалками;
- б) многократным перекачкой жидкости по контуру;
- в) за счет многократного перемешивания потоков на диафрагмах и рассекателях;
- г) в аппаратах, в которых в качестве устройств, перемешивают, обустраиваются газораспределительные перфорированные решетки, пористые плитки, барботеры или эрлифты.
- 41. Текущее перемешивание осуществляется:
- а) механическими мешалками;
- б) многократным перекачкой жидкости по контуру;
- в) за счет многократного перемешивания потоков на диафрагмах и рассекателях;
- г) в аппаратах, в которых в качестве устройств, перемешивают, обустраиваются газораспределительные перфорированные решетки, пористые плитки, барботеры или эрлифты.
- 42. Пневматическое перемешивание осуществляется:
- а) механическими мешалками;
- б) многократным перекачкой жидкости по контуру;
- в) за счет многократного перемешивания потоков на диафрагмах и рассекателях;
- г) в аппаратах, в которых в качестве устройств, перемешивают, обустраиваются газораспределительные перфорированные решетки, пористые плитки, барботеры или эрлифты.
- 43. Затраты энергии при пневматического перемешивания зависят:
- а) от частоты вращения мешалки;
- б) от объемной подачи газа;
- в) от расходов напора во время его движения через аппарат;
- г) от объемной подачи газа и от расходов напора во время его движения через аппарат.
- 44. Для замеса пастообразных материалов наиболее часто используются:
- а) валы с лопастями, которые вращаются;
- б) ленточные смесители;
- в) горизонтальные валы с Z-образной формой лопастей;
- г) парные валы-шнеки с Т-образными лопастями.
- 45. Для перемешивания высоковязких жидкостей (η до 500 Па · c) используются:
- а) валы с лопастями, которые вращаются;
- б) ленточные смесители;
- в) горизонтальные валы с Z-образной формой лопастей;
- г) парные валы-шнеки с Т-образными лопастями.
- 46. Для аппаратов с вращающимися механическими мешалками определяющим линейным размером целесообразно принимать:
- а) глубину погружения мешалки в смесь;
- б) диаметр мешалки;
- в) ширину лопаты мешалки;
- г) длину лопаты мешалки.
- 47. пренебречь влиянием силы тяжести:
- а) возможно при низких частотах вращения мешалки;
- б) возможно при высоких частотах вращения мешалки;
- в) возможно при установке отбивных перегородок;
- г) нельзя.
- 48. Критерий мощности являются:
- а) безразмерным выражением мощности, затрачиваемой на перемешивание;
- б) выражением мощности, затрачиваемой на перемешивание с размерностью [Вт];
- в) степени отношение сил инерции к силам вязкости;
- г) степени отношение сил инерции к силе тяжести.

- 49. Коэффициент с в основном уравнении перемешивания, при решении его графическим путем, определяется:
- а) по углу наклона полученной прямой к оси абсцисс;
- б) по величине отрезка, отсекается прямой на оси lgRe;
- в) по величине отрезка, отсекается прямой на оси lgEu;
- г) по величине отрезка, отсекается прямой на оси lgEu с учетом ее угла наклона.
- 50. Псевдоожижение это:
- а) процесс приведения в тесное соприкосновение твердых частиц и газов;
- б) процесс приведения неподвижного слоя твердых частиц, лежит на решетке, в взвешенное состояние, при котором твердые материалы приобретают свойства жидкости;
- в) процесс подачи сверху вниз через неподвижный слой твердых частиц, находящихся на решетке, потока газа со скоростью, лежит в определенных пределах, при котором происходит интенсивное перемешивание твердых частиц, которое во многом напоминает кипящую жидкость;
- г) процесс подачи снизу вверх через неподвижный слой твердых частиц, находящихся на решетке, потока газа со скоростью, не превышающей первую критическую.
- 51. Первая критическая скорость это:
- а) скорость, при которой начинается процесс псевдоожижения;
- б) скорость, при которой заканчивается процесс псевдоожижения;
- в) скорость, при которой начинается процесс пневмотранспортировании;
- г) скорость, при которой заканчивается процесс пневмотранспортировании.
- 52. Вторая критическая скорость это:
- а) скорость, при которой начинается процесс псевдоожижения;
- б) скорость, при которой заканчивается процесс псевдо сжижения и начинается процесс пневмотранспортировании;
- в) скорость, при которой начинается процесс пневмотранспортировании;
- г) скорость, при которой заканчивается процесс пневмотранспортировании.
- 53. При подаче потока воздуха со скоростью, которая меньше первой критической, материал:
- а) находится во взвешенном (псевдоожиженном) состоянии;
- б) находится в неподвижном состоянии;
- в) начинает перемещаться по системе (отнесение долей)
- г) находится в уплотненном состоянии.
- 54. При подаче потока воздуха со скоростью, находится в пределах между первой и второй критическими скоростями, материал:
- а) находится во взвешенном (псевдоожиженном) состоянии;
- б) находится в неподвижном состоянии;
- в) начинает перемещаться по системе (отнесение долей)
- г) находится в уплотненном состоянии.
- 55. При подаче потока воздуха со скоростью, равной или превышающей вторую критическую, материал:
- а) находится во взвешенном (псевдоожиженном) состоянии;
- б) находится в неподвижном состоянии;
- в) начинает перемещаться по системе (отнесение долей)
- г) находится в уплотненном состоянии.
- 56. Применение процесса псевдоожижения в процессах сушки, обжига и адсорбции осуществляется в целях:
- а) замедление нежелательных реакций;
- б) ускорение протекания данных процессов;
- в) замедление протекания данных процессов;
- г) сохранение полезных веществ в продукте.
- 57. Фиктивная скорость газа $\omega \Phi$ это:
- а) объемный расход газа, отнесенная к полному поперечного сечения пустого аппарата;

- б) объемный расход газа, отнесенная к полному поперечного сечения аппарата, заполненного сыпучим материалом;
- в) объемный расход газа, отнесенная к полному объему пустого аппарата;
- г) объемный расход газа, отнесенная к полному объему аппарата, заполненного сыпучим материалом.
- 58. Действительная скорость газа в промежутках между частицами $\omega Д$:
- а) всегда меньше фиктивной;
- б) всегда больше фиктивной;
- в) равен фиктивной;
- г) может быть как меньше, так и больше фиктивной, в зависимости от условий протекания процесса.
- 59. Кривая псевдоожижения представляет собой:
- а) зависимость изменения гидравлического сопротивления слоя $\Delta p_{CЛ}$ во времени τ ;
- б) зависимость изменения гидравлического сопротивления слоя $\Delta p_{\rm CJ}$ от фиктивной скорости газа $\omega \Phi$;
- в) зависимость изменения гидравлического сопротивления слоя Δp_{CJ} от действительной скорости газа ω_n ;
- г) зависимость изменения фиктивной скорости газа ω_{Φ} во времени τ .
- 60. Постоянное значение гидравлического сопротивления Δp_{CJ} частиц во взвешенном состоянии можно объяснить тем, что:
- а) при повышении расхода газа и его фиктивной скорости ω_{Φ} , увеличение объема взвешенного слоя и расстояния между частицами не происходит, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, растет;
- б) при повышении расхода газа и его фиктивной скорости ω_{Φ} происходит одновременное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\rm Д}$, от которой зависит сопротивление слоя, остается неизменной;
- в) при повышении расхода газа и его фиктивной скорости ω_{Φ} на этом этапе происходит значительное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, становится практически равной фиктивной, то есть снижается по сравнению со своим предыдущим значением;
- г) фиктивная скорость всегда больше действительной, а при наступлении данного периода расстояние между частицами настолько значительна, что рабочую камеру можно рассматривать как пустую, а значит действительная скорость газа между частицами $\omega_{\rm Д}$, от которой зависит сопротивление слоя, растет.
- 61. Увеличение гидравлического сопротивления Δp_{CJ} в неподвижном состоянии частиц, до наступления процесса псевдоожижения, можно объяснить тем, что:
- а) при повышении расхода газа и его фиктивной скорости ω_{Φ} , увеличение объема взвешенного слоя и расстояния между частицами не происходит, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, растет;
- б) при повышении расхода газа и его фиктивной скорости ω_{Φ} происходит одновременное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\rm Д}$, от которой зависит сопротивление слоя, остается неизменной;
- в) при повышении расхода газа и его фиктивной скорости ω_{Φ} на этом этапе происходит значительное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, становится практически равной фиктивной, то есть снижается по сравнению со своим предыдущим значением;

- г) фиктивная скорость всегда больше действительной, а при наступлении данного периода расстояние между частицами настолько значительна, что рабочую камеру можно рассматривать как пустую, а значит действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, растет.
- 62. Небольшое снижение гидравлического сопротивления $\Delta p_{CЛ}$ при наступлении режима пневмотранспортировании можно объяснить тем, что:
- а) при повышении расхода газа и его фиктивной скорости ω_{Φ} , увеличение объема взвешенного слоя и расстояния между частицами не происходит, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, растет;
- б) при повышении расхода газа и его фиктивной скорости ω_{Φ} происходит одновременное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, остается неизменной;
- в) при повышении расхода газа и его фиктивной скорости ω_{Φ} на этом этапе происходит значительное увеличение объема взвешенного слоя и расстояния между частицами, вследствие этого действительная скорость газа между частицами $\omega_{\text{д}}$, от которой зависит сопротивление слоя, становится практически равной фиктивной, то есть снижается по сравнению со своим предыдущим значением;
- г) фиктивная скорость всегда больше действительной, а при наступлении данного периода расстояние между частицами настолько значительна, что рабочую камеру можно рассматривать как пустую, а значит действительная скорость газа между частицами $\omega_{\rm Д}$, от которой зависит сопротивление слоя, растет.
- 63. Важнейшей характеристикой слоя твердых частиц, как недвижимого, так и взвешенного, являются:
- а) поперечное сечение частиц;

- в) плотность частиц;
- б) эквивалентный диаметр частиц;
- г) порозность материала.

- 64. порозность это:
- а) объемная доля газа в доле;
- б) четко ориентирована в пространстве структура доли;
- в) объемная доля газа в слое;
- г) объемная твердых частиц в слое.
- 65. Для взвешенного слоя порозность є с увеличением расхода газа:
- а) будет снижаться, так как объем взвешенного слоя $V_{\text{СЛ}}$ при этом возрастает;
- б) будет снижаться, так как объем взвешенного слоя V_{CII} при этом уменьшается;
- в) будет повышаться, так как объем взвешенного слоя $V_{\rm CЛ}$ при этом возрастает;
- Γ) будет повышаться, так как объем взвешенного слоя V_{CJI} при этом уменьшается.
- 66. Для определения порозности взвешенного слоя необходимо знать:
- а) порозность недвижимого слоя;
- б) порозность неподвижного слоя и эквивалентный диаметр частиц;
- в) порозность неподвижного слоя, высоту взвешенного слоя и эквивалентный диаметр частиц;
- г) порозность неподвижного слоя, высоту взвешенного и высоту неподвижного слоя.
- 67. Процесс прессования не применяют для:
- а) обезвоживания;

в) брикетирования;

б) гранулирования;

- г) нет верного ответа.
- 68. Таблетирование и гранулирования является разновидностью:
- а) обезвоживания;

в) брикетирования;

б) формирование;

- г) нет верного ответа.
- 69. По типу основного рабочего органа формирующие машины подразделяют на:
- а) валковые, шестерни, винтовые, шнековые, дисковые, поршневые, комбинированные;
- б) Одношнековые, многошнековые, двухшнековые;

- в) нормальные и быстроходные;
- г) валковые, шестерни, винтовые.
- 70. Степень отжима влаги во время обезвоживания зависит:
- а) от давления прессования;
- б) от температуры в камере;
- в) от начальной влаги материала;
- г) все ответы дополняют друг друга.
- 71. На начальном этапе прессования:
- а) до толщины брикета h3 продукт сжимается без значительных усилий;
- б) увеличение давления хотя и приводит к уменьшению высоты брикета, но этот процесс идет с затухающей скоростью;
- в) даже значительное повышение давлении не приводит к более или менее заметного изменения высоты;
- г) увеличение давления приводит к значительному уменьшению высоты брикета, но этот процесс идет с затухающей скоростью.
- 72. На втором этапе прессования:
- а) до толщины брикета h3 продукт сжимается без значительных усилий;
- б) увеличение давления хотя и приводит к уменьшению высоты брикета, но этот процесс идет с затухающей скоростью;
- в) даже значительное повышение давлении не приводит к более или менее заметного изменения высоты;
- г) увеличение давления приводит к значительному уменьшению высоты брикета, но этот процесс идет с затухающей скоростью.
- 73. На третьем этапе прессования:
- а) до толщины брикета h3 продукт сжимается без значительных усилий;
- б) увеличение давления хотя и приводит к уменьшению высоты брикета, но этот процесс идет с затухающей скоростью;
- в) даже значительное повышение давлении не приводит к более или менее заметного изменения высоты;
- г) увеличение давления приводит к значительному уменьшению высоты брикета, но этот процесс идет с затухающей скоростью.
- 74. Показателем плотности брикета являются:
- а) коэффициент уплотнения;
- б) относительное упругое расширение брикета;
- в) разница между начальным объемом продукта и объемом брикета;
- г) разница между высотой производного продукта и высотой брикета.
- 75. Давление прессования состоит из:
- а) давления на уплотнение продукта;
- б) давления на преодоление сил трения продукта в форму;
- в) давления на уплотнение продукта и давления на преодоление сил трения продукта в форму;
- г) нет верного ответа.
- 76. Под конвективной сушкой понимают процесс:
- а) удаление влаги из продукта путем испарения ее в окружающую среду;
- б) переноса вещества в направлении уменьшения его концентрации за счет хаотического движения микрочастиц вещества;
- в) сгущение растворов при кипячении;
- г) выписки из твердого или жидкого, сложной по составом вещества, одного или нескольких компонентов с помощью растворителя, имеет избирательную растворимость.
- 77. Процесс сушки продуктов относится к:
- а) массообминних процессов;

в) тепловых процессов;

б) механических процессов;

г) гидромеханических процессов.

78. Движущей силой процесса конвективной су	шки есть;
а) разница температур;	в) разница влагосодержание;
б) разность давлений;	г) центробежная сила.
79. Влажное из материала нельзя удалить:	
а) конденсацией;	в) выкипания;
б) испарением;	г) псевдоожижения.
80. Максимальная концентрация паров влаги в п	воздухе:
а) прямо пропорциональна его давлению;	•
б) обратимо его давления;	
в) прямо пропорциональна его температуре	
г) обратнопропорционально его температуре.	
81. При конвективной сушке воздуха выполняет	г роль:
а) адсорбента;	в) фильтра;
б) абсорбента;	г) теплообменника.
82. Сушилки, в которых тепло для испарения вл	
называются:	,
а) шахтными;	в) сублимационными;
б) барабанными;	г) ламповыми-радиационными.
83. распыляя сушилки применяются для сушки:	· •
а) жидких продуктов;	в) вязких продуктов;
б) твердых продуктов;	г) сыпучих продуктов.
84. В зависимости от давления, создаваемого в с	
на:	орименти киморо, оримент подразданиетом
а) атмосферные;	
б) работающие под избыточным давлением;	
в) вакуумные;	
г) глубоковакуумни.	
85. Процесс конвективной сушки проходит при	•
а) постоянной энтальпии;	•
б) постоянной скорости сушки;	
в) постоянной энтропии;	
г) постоянном влагосодержание водяных паров.	
86. В конвективных сушилок относятся:	
а) вальцевые;	в) аерофонтанни;
б) шахтные;	г) распыляющие.
87. Изменение каких параметров нужно определ	, 1
а) давления и температуры;	в) влажности и времени;
б) влажности и температуры;	г) температуры и времени.
88. Сущность процессов перегонки и ректифика	
а) разделении жидких однородных смесей на со	
б) разделении жидких неоднородных смесей на	
в) выделении взвешенных частиц из смеси;	составляющие,
г) нет верного ответа.	
89. Процесс перегонки применяется:	
а) в производстве этилового спирта, выходит во	в время брожения краумала и сауаристыу
веществ;	о времи орожении краимана и саларистых
б) при получении коньячного спирта из вина;	
	DIATAMINIOD A ILE III MILIO MARO II MOCCATI
в) в витаминном производстве при извлечении в	энтаминов А и Б из рыовего жира и масел;
г) во всех вышеперечисленных производствах.	
90. Перегонка основана на:	

а) разницы температур кипения, парциальных давлений и летучести отдельных компонентов,

входящих в состав смеси;

- б) разности концентраций компонента, извлекается в смеси и в области над ней;
- в) разности давлений над и под границей раздела газа и смеси;
- г) нет верного ответа.
- 91. Труднолетючим или высококипящих компонентах называется:
- а) компонент смеси, кипит при более низкой температуре
- б) компонент смеси, невозможно довести до кипения;
- в) компонент смеси, возможно довести до кипения только при очень высоких температурах
- г) компонент который имеет меньшую летучесть.
- 92. Легколетучее или низкокиплячим компонентом называется:
- а) компонент смеси, кипит при более низкой температуре
- б) компонент смеси, невозможно довести до кипения;
- в) компонент смеси, возможно довести до кипения только при очень высоких температурах
- г) компонент, имеет меньшую летучесть.
- 93. Дистиллят или ректификат это:
- а) жидкость, не испарилась и, соответственно, имеет состав более насыщенный труднолетючим компонентом;
- б) жидкость, полученная в результате конденсации пара;
- в) жидкость, будет подвергаться выпаривания;
- г) нет верного ответа.
- 94. Остаток в процессе ректификации это:
- а) жидкость, не испарилась и, соответственно, имеет состав более насыщенный труднолетючим компонентом;
- б) жидкость, полученная в результате конденсации пара;
- в) жидкость, будет подвергаться выпаривания;
- г) нет верного ответа.
- 95. Дистилляция (простая перегонка) это:
- а) процесс однократного частичного выпаривания жидкой смеси и конденсации пара, образующегося;
- б) процесс однократного полного выпаривания жидкой смеси и конденсации пара, образующегося;
- в) процесс разделения многокомпонентной гомогенной смеси летучих веществ путем многократного выпаривания и конденсации этой смеси сопровождается возвращением части конденсата в виде флегмы;
- г) процесс выделения из воды минеральных веществ.
- 96. Ректификация это:
- а) процесс однократного частичного выпаривания жидкой смеси и конденсации пара, образующегося;
- б) процесс однократного полного выпаривания жидкой смеси и конденсации пара, образующегося;
- в) процесс разделения многокомпонентной гомогенной смеси летучих веществ путем многократного выпаривания и конденсации этой смеси сопровождается возвращением части конденсата в виде флегмы;
- г) процесс выделения из воды минеральных веществ.
- 97. В чем состоит принципиальное отличие процессов выпаривания и перегонки:
- а) выпаривания подвергаются смеси, в которых и растворитель и растворенное вещество имеют летучесть, а перегонке подвергаются жидкие смеси, состоящие из летучего растворителя и нелетучего растворенного вещества;
- б) при испарении процесс удаления влаги осуществляется только с поверхности, а при перегонке по всему объему;
- в) выпаривания подвергаются смеси, состоящие из летучего растворителя и нелетучего растворенного вещества, а перегонке подвергаются жидкие смеси, в которых и растворитель и растворенное вещество имеют летучесть;

- г) при испарении процесс удаления влаги осуществляется по всему объему, а при перегонке только с поверхности.
- 98. Вакуумвыпаривание это:
- а) процесс концентрирования растворов твердых нелетучих веществ путем удаления летучего растворителя при кипении;
- б) процесс перехода жидкости, находящейся при температуре насыщения tS или немного перегретой по этой температуры, в пар внутри ее объема с образованием паровых пузырьков;
- в) процесс перехода пары или сжатого до критического состояния газа в жидкое состояние;
- г) процесс гидротермической обработки продуктов с целью доведения их до состояния готовности.
- 99. Какой основной процесс в вакуум-выпарном аппарате:

а) кипение;

в) конденсация;

б) испарение;

г) нагрев.

100. Какой пар получают в процессе кипения продукта:

а) перегретый;

в) влажный;

б) сухой;

- г) сухой насыщенный.
- 101. В чем основное отличие выпаривания от вакуум-выпаривания:
- а) давление в аппарате поддерживается на таком уровне, чтобы кипение продукта происходило при температуре 90 ... $100\,^\circ$ C;
- б) давление в аппарате поддерживается на таком уровне, чтобы кипение продукта происходило при температуре 100 ... 110 ° C;
- в) давление в аппарате поддерживается на таком уровне, чтобы кипение продукта происходило при температуре 45 ... 55 ° C;
- г) давление в аппарате поддерживается на таком уровне, чтобы кипение продукта происходило при температуре 70 ... $80\,^{\circ}$ C.
- 102. Температура кипения продукта устанавливается:
- а) в зависимости от вида продукта;
- б) не выше 60 ° С с целью сохранения полезных веществ и витаминов;
- в) в зависимости от производительности установки;
- г) не ниже 60 ° C, обеспечивает нормальную интенсивность кипения продукта.
- 103. Какой теплоноситель используют в выпарной установке:

а) горячую воду;

в) пар;

б) высокотемпературную масло;

г) дымовые газы.

104. В сухопарнике:

- а) капли выпаренного продукта под действием кулоновских сил отбрасываются на стенки сухопарника и по образованной ими пленке стекают вниз;
- б) под действием центробежных сил капли выпаренного продукта, потому что они воздуха, отбрасываются на периферию и образуют на стенках пленку (пленочная конденсация) стекают вниз, а воздух направляется по центральной части сухопарника;
- в) капли выпаренного продукта под действием кулоновских сил сливаются в более крупные и, благодаря снижению их парусности, падают вниз;
- г) под действием центробежных сил капли выпаренного продукта сливаются в более крупные и, благодаря снижению их парусности, падают вниз.
- 105. Большая высота и диаметр сухопарника устраиваются:
- а) с целью увеличения скорости движения пара и снижение времени его нахождения в сухопарнике;
- б) с целью увеличения производительности аппарата;
- в) с целью снижения скорости движения пара и увеличение времени его нахождения в сухопарнике;
- г) с целью увеличения поверхности контакта капель продукта.

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ТЕКУЩЕМУ МОДУЛЬНОМУ КОНТРОЛЮ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 1. Краткий исторический очерк развития курса «Процессы и аппараты пищевых производств».
- 2. Общие закономерности технологических процессов.
- 3. Понятие об энергетическом балансе.
- 4. Классификация процессов пищевой технологии по изменению параметров процесса во времени.
- 5. Классификация процессов по структуре рабочего цикла.
- 6. Классификация процессов по движущей силе.
- 7. Материалы, используемые для изготовления аппаратов пищевых производств. Краткая характеристика.
- 8. Основные требования, предъявляемые при разработке конструкций аппаратов и машин.
- 9. Режимы движения жидкости. Уравнение неразрывности потока.
- 10. Гидростатический парадокс.
- 11. Гидравлическое сопротивления.
- 12. Гидростатическое давление.
- 13. Гидравлические машины, их классификация.
- 14. Объемные насосы.
- 15. Основные этапы исследований по созданию новых процессов и аппаратов.
- 16. Виды подобия.
- 17. Первая теорема подобия.
- 18. Вторая теорема подобия.
- 19. Третья теорема подобия.
- 20. Характеристики и методы оценки дисперсных систем.
- 21. Классификация неоднородных систем и методов их разделения.
- 22. Материальный баланс процесса разделения неоднородной системы.
- 23. Кинетическое уравнение гидромеханических процессов.
- 24. Осаждение в поле сил тяжести (отстаивание).
- 25. Определение скорости осаждения твердой шаровой частицы в жидкости.
- 26. Производительность отстойников.
- 27. Разделение неоднородных систем под действием центробежной силы.
- 28. Принципиальная схема циклона.
- 29. Принципиальная схема сепаратора.
- 30. Суть и классификация процессов перемешивания.
- 31. Механическое перемешивание. Типы мешалок.
- 32. Поточное, пневматическое и циркуляционный перемешивания жидких сред.
- 33. Суть и назначение процесса гомогенизации.
- 34. Принципиальная схема клапанного гомогенизатора.
- 35. Псевдоожижение, его характеристика. Кривая псевдоожижения.
- 36. Мембранные методы разделения жидкостных систем. Общая характеристика процесса фильтрации.
- 37. Классификация аппаратов для фильтрования.
- 38. Фильтрация под действием центробежной силы.
- 39. Фильтрующие и отстойные центрифуги.
- 40. Принципиальный устройство вакуум фильтров непрерывного действия.
- 41. Способы измельчения.
- 42. Поверхностная и объемная теории измельчения.
- 43. Классификация способов измельчения. Степень измельчения.
- 44. Классификация машин для измельчения.
- 45. Общие требования, предъявляемые к дробилкам.
- 46. Щековая и валковая дробилки. Принципиальные схемы.

- 47. Барабанные мельницы. Принципиальная схема барабанной мельницы.
- 48. Критическая скорость барабанной мельницы
- 49. Определение критической частоты вращения барабанной мельницы.
- 50. Режущие машины.
- 51. Характеристика процесса прессования.
- 52. Определение коэффициента прессования.
- 53. Производительность шнекового пресса.
- 54. Характеристика и классификация методов сортировки сыпучих материалов.
- 55. Сортировка. Сортировка по размеру. Принципиальные схемы аппаратов.
- 56. Сортировка по размеру частиц. Ситовой анализ.
- 57. Сортировка материалов по магнитным свойствам.
- 58. Принципиальные схемы аппаратов для смешивания сыпучих материалов.
- 59. Теплообменные аппараты, их назначения.
- 60. Теплообменные аппараты, их назначения. Классификация теплообменников
- 61. Кинетическое уравнение тепловых процессов.
- 62. Основное уравнение теплопередачи. Движущая сила тепловых процессов.
- 63. Теплопроводность. Конвекция.
- 64. Конвективный теплообмен.
- 65. Лучистый теплообмен, его характеристика.
- 66. Теплообменники. Конструкции теплообменников.
- 67. Классификация поверхностных теплообменников.
- 68. Поверхностные теплообменники.
- 69. Пластинчатые теплообменники.
- 70. Регенерация теплоты.
- 71. Интенсификация тепловых процессов.
- 72. Способы интенсификации тепловых процессов.
- 73. Выпаривание. Классификация выпарных аппаратов.
- 74. Тепловой баланс выпарного аппарата.
- 75. Выпаривание. Однокорпусные выпарные установки, принципиальные схемы.
- 76. Однокорпусные вакуум-выпарная установка непрерывного действия.
- 77. Многокорпусные выпарные, принципиальная схема.
- 78. Преимущества многокорпусных выпарных установок.
- 79. Способы нагрева.
- 80. Нагрев теплоносителями.
- 81. Конденсация. Поверхностные конденсаторы. Конденсаторы смешивания.
- 82. Поверхностные конденсаторы, их принципиальные схемы.
- 83. Процесс охлаждения. Охлаждение с помощью воды, воздуха, льда и его характеристики
- 84. Назначение и суть процессов пастеризации и стерилизации продуктов.
- 85. Кинетическое уравнение массообменных процессов.
- 86. Массообмена между фазами. Материальный баланс процесса массообмена.
- 87. Молекулярная и конвективная диффузия.
- 88. Теории массопередачи. Термодиффузия. Бародифузия.
- 89. Физические основы и материальный баланс процесса абсорбции.
- 90. Абсорбция. Материальный баланс процесса абсорбции.
- 91. Абсорбция. Требования к абсорбентам.
- 92. Принципиальные схемы основных типов абсорберов.
- 93. Адсорбция. Материальный баланс процесса адсорбции.
- 94. Краткая характеристика процесса адсорбции и адсорбентов, используемых в пищевых производствах.
- 95. Требования к адсорбентам.
- 96. Принципиальные схемы основных типов адсорберов.
- 97. Краткая характеристика процесса экстрагирования.

- 98. Экстракция. Материальный баланс процесса экстракции.
- 99. Условия, влияющие на эффективность процесса экстрагирования в системе твердое тело жидкость.
- 100. Стадии процесса экстрагирования.
- 101. Принципиальные схемы экстракторов.
- 102. Ректификация. Принципиальная схема ректификационной колонны.
- 103. Перегонка. Принципиальная схема аппарата.
- 104. Краткая характеристика процесса сушки.
- 105. Влажность, равновесная влажность, влагосодержание материала.
- 106. Кинетика сушки. Построение кривой сушки.
- 107. Тепловой баланс процесса сушки.
- 108. Расчеты процессов сушки по ід- диаграмме влажного воздуха.
- 109. Классификация сушилок и принципиальные схемы основных типов сушилок.
- 110. Специальные методы сушки (сублимацией, инфракрасными лучами и токами СВЧ), их краткая характеристика.
- 111. Краткие сведения о процессе кристаллизации и зарождения кристаллов.

13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Очная и заочная форма обучения 4-й семестр

ма в лах	Текущее тестирование и самостоятельная работа						
Сум	Содержательный модуль №2				дуль №1	ательный мо	Содержа
100	T7	T6	T5	T4	Т3	T2	T1
100	15	15	10	10	20	15	15

5-й семестр

Текущее тестирование и самостоятельная работа							текущий эль, балл	говый троль ен), балл	в баллах					
Сод	ержат	ельнь №3	ий мо <i>д</i>	дуль		Содержательный модуль №4					Итого контрс	Итог конт (экзаме	Сумма	
T8	T9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	40	60	100
4	4	4	4	4	3	3	3	3	3	3	2	40	00	100

Курсовой проект

Пояснительная записка, балл	Графическая часть, балл	Защита проекта (работы), балл	Сумма, балл
до 30	до 30	до 40	100

Государственная шкала оценивания академической успеваемости (зачёт)

Сумма баллов за	По государственной	Определение
все виды учебной деятельности	шкале	
60-100	«зачтено»	Правильно выполненные задания учебной дисциплины. Может быть незначительное количество ошибок.
0-59	«не зачтено»	Неудовлетворительно, с возможностью повторной аттестации

Государственная шкала оценивания академической успеваемости (экзамен)

Сумма баллов за все	По государственной	Определение
виды учебной	шкале	
деятельности		
90-100	«Отлично» (5)	отлично – отличное выполнение с
		незначительным количеством
		неточностей
80-89	«Хорошо» (4)	хорошо – в целом правильно
		выполненная работа с незначительным
		количеством ошибок (до 10 %)
75-79		хорошо – в целом правильно
		выполненная работа с незначительным
		количеством ошибок (до 15 %)
70-74	«Удовлетворительно»	удовлетворительно – неплохо, но со
	(3)	значительным количеством недостатков
60-69		удовлетворительно – выполнение
		удовлетворяет минимальным
		критериям
35-59	«Неудовлетворительно»	неудовлетворительно – с возможностью
	(2)	повторной аттестации
0-34		неудовлетворительно – с обязательным
		повторным изучением дисциплины
		(выставляется комиссией)

14. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная:

- 1. Остриков А.Н., Процессы и аппараты пищевых производств [Электронный ресурс]: учеб. для вузов / А.Н. Остриков, О.В. Абрамов, А.В. Логинов СПб. : ГИОРД, 2012. 616 с. ISBN 978-5-98879-124-9 Режим доступа: http://www.studentlibrary.ru/book/
- 2. Новоселов, А. Г. Процессы и аппараты пищевых производств [Электронный ресурс] : учеб.-метод. пособие / А. Г. Новоселов, Ю. Н. Гуляева, А. Б. Дужий ; М-во науки и образования РФ, Ун-т ИТМО . СПб. : Университет ИТМО, 2016 . Локал. компьютер сеть НБ ДонНУЭТ.
- 3. Жуков В.И. Процессы и аппараты пищевых производств [Электронный ресурс]: учебное пособие/ Жуков В.И.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2013.— 188 с.— Режим доступа: http://www.iprbookshop.ru/

Дополнительная:

- 1. Тутов Н.Д. Процессы и аппараты пищевых производств. Учебное пособие для студентов направления подготовки 19.03.04 «Технология продукции и организация общественного питания» / Н.Д. Тутов, В.А. Авроров, С.Ф. Рюмшина Курск, 2019. 293 с. Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=42430251&
- 2. Поперечный А. Н. Процессы и аппараты пищевых производств. Курсовое проектирование [Текст] : учебное пособие для студентов укрупн. группы 15.00.00: "Машиностроение", направления подгот. 15.03.02 : "Технологические машины и оборудование" профиль "Оборудование перерабатывающих и пищевых производств" образовательный уровень-бакалавриат, оч. и заоч. формы обучения / А. Н. Поперечный ; Министерство образования и науки Донецкой Народной Республики, ГО ВПО "Донецкий национальный университет экономики и торговли имени Михаила, Туган-Барановского", Кафедра оборудования пищевых производств . Изд. 2-е, перераб. и доп. Донецк : ДонНУЭТ, 2019 . 136, [4] с. : рис., табл.
- 3. Романков П.Г. Методы расчета процессов и аппаратов химической технологии (примеры и задачи) [Электронный ресурс]: учебное пособие для вузов/ Романков П.Г., Фролов В.Ф., Флисюк О.М.— Электрон. текстовые данные.— СПб.: ХИМИЗДАТ, 2017.— 544 с. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/67350.html.
- 4. Семикопенко И.А. Процессы и аппараты пищевых производств [Электронный ресурс]: учебное пособие/ Семикопенко И.А., Карпачев Д.В., Герасименко В.Б.— Электрон. текстовые данные.— Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2017.— 213 с.— .— ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/80471
- 5. Холодилин А.Н. Лабораторный практикум по курсу «Процессы и аппараты пищевых производств» [Электронный ресурс]: учебное пособие/ А.Н.Холодилин, С.Ю.Соловых— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014.— 142 с.— ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/33639.html
- 6. Расчет и конструирование машин и аппаратов пищевых производств. Практикум [Электронный ресурс]: учебное пособие/ А.Н. Остриков [и др.].— Электрон. текстовые данные.— Воронеж: Воронежский государственный университет инженерных технологий, 2014.— 200 с. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/47446.html.
- 7. Федоров К.М. Процессы и аппараты пищевых производств. Курсовое проектирование. Выпарные установки. Часть 2 [Электронный ресурс]: учебно-методическое пособие/ Федоров К.М., Гуляева Ю.Н.— Электрон. текстовые данные.— СПб.: Университет ИТМО, Институт холода и биотехнологий, 2014.— 40 с. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/68063.html.

- 8. Вобликова Т.В. Процессы и аппараты пищевых производств [Электронный ресурс]: учебное пособие/ Вобликова Т.В., Шлыков С.Н., Пермяков А.В.— Электрон. текстовые данные.— Ставрополь: Ставропольский государственный аграрный университет, АГРУС, 2013.— 212 с.— Режим доступа: http://www.iprbookshop.ru/47344
- 9. Алексеев Г.В. Процессы и аппараты пищевых производств [Электронный ресурс]: краткий курс и лабораторные работы/ Алексеев Г.В.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2013.— 73 с. ЭБС «IPRbooks»— Режим доступа: http://www.iprbookshop.ru/16902
- 10. Остриков А.Н. Аттестационно-педагогические измерительные материалы для аттестации студентов по курсу «Процессы и аппараты пищевых производств» [Электронный ресурс]/ Остриков А.Н., Калинина В.С., Наумченко И.С.— Электрон. текстовые данные.— Воронеж: Воронежский государственный университет инженерных технологий, 2010.— 173 с.— ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/27313.html

Учебно-методические издания:

- 1. Поперечный, А. Н. Процессы и аппараты пищевых производств. Курсовое проектирование [Электронный ресурс] : учеб. пособ. / А. Н. Поперечный, В. Г. Корнийчук, С. А. Боровков ; М-во образования и науки ДНР, Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, Каф. оборудования и пищев. производств . Донецк : ДонНУЭТ, 2015 . Локал. компьютер. сеть НБ ДонНУЭТ.
- 2. Поперечный, А. Н. Процессы и аппараты пищевых производств [Электронный ресурс]: методические указания к выполнению практических работ для студентов направления подготовки 15.03.02 Технологические машины и оборудование, 13.03.03 Энергетическое машиностроение, 19.03.04 Технология продукции и организация общественного питания, 19.03.03 Продукты питания животного происхождения, 19.03.02 Продукты питания из растительного сырья всех форм обучения / А. Н. Поперечный, В. Г. Корнийчук; Кафедра оборудования пищевых производств, Министерство образования и науки Донецкой Народной Республики (ДНР), Государственная организация высшего профессионального образования "Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского (ГО ВПО "ДонНУЭТ") . Донецк : ДонНУЭТ, 2020 . Локал. компьютер сеть НБ ДонНУЭТ.
- 3. Процессы и аппараты пищевых производств (1 семестр изучения дисциплины) [Электронный ресурс]: дистанционный курс / В.А. Парамонова Электрон. текстовые данные. Донецк : ФГБОУ ВО «ДОННУЭТ», 2024. Режим доступа: https://distant.donnuet.ru/course/view.php?id=9856 (ежегодное обновление)
- 4. Процессы и аппараты пищевых производств (2 семестр изучения дисциплины) [Электронный ресурс]: дистанционный курс / В.А. Парамонова Электрон. текстовые данные. Донецк : ФГБОУ ВО «ДОННУЭТ», 2024. Режим доступа: https://distant.donnuet.ru/course/view.php?id=140#section-7 (ежегодное обновление)

15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

- 1. Автоматизированная библиотечная информационная система UNILIB [Электронный ресурс] Версия 1.100. Электрон.дан. [Донецк, 1999-]. Локал. сеть Науч. б-ки ГО ВПО Донец.нац. ун-та экономики и торговли им. М. Туган-Барановского. Систем.требования: ПК с процессором; Windows; транспорт.протоколы TCP/IP и IPX/SPX в ред. Microsoft; мышь. Загл. с экрана.
- 2. IPRbooks: Электронно-библиотечная система [Электронный ресурс] : [«АЙ Пи Эр Медиа»] / [ООО «Ай Пи Эр Медиа»]. Электрон.текстовые, табл. и граф. дан. Саратов, [2018]. Режим доступа: http://www.iprbookshop.ru. Загл. с экрана.
- 3. Elibrary.ru [Электронный ресурс] : науч. электрон.б-ка / ООО Науч. электрон. б-ка. Электрон.текстовые. и табл. дан. [Москва] : ООО Науч. электрон. б-ка., 2000- .– Режим доступа : https://elibrary.ru. Загл. с экрана.
- 4. Научная электронная библиотека «КиберЛенинка» [Электронный ресурс] / [ООО

- «Итеос» ; Е. Кисляк, Д. Семячкин, М. Сергеев]. Электрон.текстовые дан. [Москва : OOO «Итеос», 2012-]. Режим доступа : http://cyberleninka.ru. Загл. с экрана.
- 5. Национальная Электронная Библиотека.
- 6. «Полпред Справочники» [Электронный ресурс] : электрон.б-ка / [База данных экономики и права]. Электрон.текстовые дан. [Москва : ООО «Полпред Справочники», 2010-]. Режим доступа : https://polpred.com. Загл. с экрана.
- 7. Bookonlime : Электронно-библиотечная система [Электронный ресурс] : ООО «Книжный дом университета». Электрон.текстовые дан. Москва, 2017. Режим доступа : https://bookonlime.ru.— Загл. с экрана.
- 8. Университетская библиотека ONLINE : Электронно-библиотечная система [Электронный ресурс] : ООО «Директ-Медиа». Электрон.текстовые дан. [Москва], 2001. Режим доступа : https://biblioclub.ru. Загл. с экрана.
- 9. Бизнес+Закон [Электронный ресурс] :Агрегатор правовой информации / [Информационно-правовая платформа]. Электрон.текстовые дан. [Донецк, 2020-]. Режим доступа : https://bz-plus.ru. Загл. с экрана.
- 10. Электронный каталог Научной библиотеки Донецкого национального университета экономики и торговли имени Михаила Туган-Барановского [Электронный ресурс] / НБ ДонНУЭТ. Электрон.дан. [Донецк, 1999-]. Режим доступа: http://catalog.donnuet.education Загл. с экрана.

16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Для проведения лекционных занятий используется демонстрационное оборудование.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети интернет и обеспечением доступа в электронную информационно-образовательную среду организации.

Алрес Наименование помещений для проведения всех видов учебной (местоположение) деятельности, предусмотренной учебным планом, в том числе помещений для помещения для самостоятельной работы, с указанием перечня проведения всех видов основного оборудования, учебно-наглядных пособий и используемого учебной деятельности, программного обеспечения предусмотренной учебным планом 1. Учебная аудитория «Процессы и аппараты пищевых производств. Тепловые 1. 283001, Донецкая Народная и массообменные процессы» № 7010 (для проведения занятий лекционного типа, лабораторных работ, курсового Республика, проектирования, групповых и индивидуальных консультаций, текущего контроля, городской округ Донецк, город Донецк, проспект промежуточной аттестации) Рабочее место преподавателя - 1; Рабочие места обучающихся - 22; Театральный, дом 28, Стационарная доска - 1; учебный корпус № 7, Стенд для исследования процесса сушки под вакуумом - 1; помещение № 13, Стенд для исследования процесса выпаривания - 1; (цокольный этаж), $52,1 \text{ м}^2$ Стенд для исследования процесса теплопередачи (пластинчатый теплообменник, простая перегонка) - 1; Стенд для исследования процесса ректификации - 1; Стенд для исследования процесса теплопередачи (охлаждения) - 1; Стенд для исследования процесса дистилляции - 1; Стенд для исследования процесса вакуум- выпаривания - 1; Стенд для исследования процесса сушки с гибким рабочим органом - 1; Стенд для исследования процесса конвективной сушки - 1; Муфельная печь - 1; Стенд для исследования процесса псевдосжижения - 1; Стенд для исследования процесса сушки в псевдоожиженном слое - 1: Стенд для исследования процесса сушки распылением – 1. 2. Учебная лаборатория «Процессы и аппараты пищевых производств. Механические и гидромеханические процессы» № 7011 283001, (для проведения занятий лекционного типа, лабораторных работ, курсового Донецкая Народная проектирования, групповых и индивидуальных консультаций, текущего контроля, Республика, городской округ Донецк, промежуточной аттестации) Рабочее место преподавателя - 1; Рабочие места обучающихся - 24; город Донецк, проспект Театральный, дом 28, Стационарная доска – 1; Стенд для исследования процесса перемешивания - 1; учебный корпус № 7, Стенд для исследования процесса прессования; помещение № 14 Стенд для исследования процесса экстрагирования - 1; (цокольный этаж), Стенд для исследования процесса осаждения - 1; $\hat{5}2,3 \text{ m}^2$ Стенд для исследования процесса осаждения – 1; Стенд для исследования гидродинамических режимов - 1; Стенд для исследования процесса Фильтрования - 1; Мембранный фильтр - 1; Виброконвейер – 1; Посудомоечная машина FAGOR LVC-21B -1; Посудомоечная машина KIARA 2cg; Картофелеочистительная машины MOK-250 -1; Машина очистки лука МОЛ-100 -1; Картофелеочистительная машины МОК-150 -1; Картофелеочистительная машина Нагема -1; Секция машины для мойки пищевого сырья КНА-1; Стенд для мытья овощей - 1; Измеритель шума и вибрации ИШВ -1; Виброшумомер ВШВ-003-М2-1 -1.

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Ф.И.О. Уровень образования, наименование	
(научно- Должность, наименование	
м педагогического) ученая специальности,	
ле паботника степень направления Сведения о допо	
п/п участвующего в ученое подготовки, профессиональном	и образовании
реализации звание наименование	
образовательной присвоенной	
программы квалификации	
1 3 5 6 7	
	OHI HOM
1 Парамонова Должность – Высшее – Сведения о дополните	
Виктория заведующий специалитет; профессиональном об	-
Андреевна кафедрой Оборудование 1. Удостоверение о П	
ОПП; перерабатывающих с 26.03. по 27.03.2024	-
ученая и пищевых заявки по системе РС	
степень – производств; ФГБУ «Федеральный	•
кандидат Инженер-механик промышленной собст	венности»,
технических Москва	
наук; Высшее – 2. Удостоверение о П	= -
ученое переподготовка; с 29.10. по 31.10.2024	г., «Система
звание – Педагог-психолог. высшего образования	
доцент. Преподаватель фактор научно- техно	логического
психологических развития» 24 часа, ФГ	ЪОУ ВО
дисциплин; "Донской государстве	енный
Педагог-психолог. технический универси	итет", Ростов-на-
Преподаватель Дону	
психологии 3. Удостоверение о П	К
7220324005263, c 23.0	
Диплом кандидата 28.09.2024 г., «Метод	
технических наук антикоррупционного	
ДК №067430 воспитания в организа	-
обра-зования (для пед	
работников)» 18 часог	
"Тюменский государс	
ситет", Тюмень	твенный универ
4. Диплом о професси	TOTION HON
переподготовке в ФГ	
и ГС при Президенте	
10.10.2023 по 16.12.20	
	,
«Человекоцентричнос	
государственном упра	
№500000075668 (per.	
2023-Д-ВШГУ-5) от 1	
5. Удостоверение о по	
квалификации 770400	\ <u>_</u>
номер 13878/23СЦ), с	
19.09.2023 г «Професс	
управление сотрудни	
ООО «Столичный цен	
образовательных техн	юлогий»,
Москва.	