Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна Должность: Прорежно Мо (Сорна-методической работе

Дата подписания: 25.02.2025 13:01:33

Уникальный программный ключенни СТЕРСТВ О НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ b066544bae1e449cd8bfce392f7224ab76a271b2 <del>РО</del>ССИЙСКОЙ ФЕДЕРАЦИИ

> ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

Кафедра холодильной и торговой техники имени Осокина В.В.

**УТВЕРЖДАЮ** 

Заведующий кафедрой

Ржесик К.А.

2024 г.

#### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по учебной дисциплине

### Б1.В.10 ТЕПЛОИСПОЛЬЗУЮЩИЕ ХОЛОДИЛЬНЫЕ МАШИНЫ И ТЕПЛОВЫЕ НАСОСЫ

(наименование учебной дисциплины, практики)

Направление подготовки 13.03.03 Энергетическое машиностроение

Программа высшего образования – программа бакалавриата

Профиль – Холодильные машины и установки

Разработчик:

Профессор, д-р техн.наук

Карнаух В.В.

ОМ рассмотрены и утверждены на заседании кафедры от «19» <u>02</u> 2024 г., протокол № 24

Донецк 2024 г.

## 1. Паспорт

# оценочных материалов по учебной дисциплине «<u>Теплоиспользующие</u> холодильные машины и тепловые насосы»

Перечень компетенций, формируемых в результате освоения учебной дисциплины:

| <b>№</b><br>п/п | Код контролируемой компетенции                                                                                                                                 | Формулировка контролируемой компетенции | Контролируемые разделы (темы) учебной дисциплины (модуля)                                                               | Этапы<br>формирован<br>ия<br>(семестр<br>изучения) |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1               | 2                                                                                                                                                              | 3                                       | 4                                                                                                                       | 5                                                  |
| 1.              |                                                                                                                                                                |                                         | <b>Тема 1.</b> История создания тепловых насосов. Области применения. Классификация тепловых насосов.                   | 7                                                  |
|                 |                                                                                                                                                                |                                         | <b>Тема 2</b> . Пароэжекторная холодильная машина (ПХМ).                                                                | 7                                                  |
|                 | Готов разрабатывать и применять энергоэффективные машины, установки, двигатели и аппараты по производству, преобразованию и потреблению различных форм энергии |                                         | <b>Тема 3</b> . Схема и принцип действия абсорбционной бромисто-литиевой холодильной машины (АБХМ).                     | 7                                                  |
|                 |                                                                                                                                                                |                                         | Тема 4. Схема и принцип действия водо-аммиачной холодильной машины или теплового насоса (ВАХМ).                         | 7                                                  |
|                 |                                                                                                                                                                |                                         | <b>Тема 5</b> . Термодинамический расчет узлов теплоиспользующих XM и TH.                                               | 7                                                  |
|                 |                                                                                                                                                                |                                         | Тема 6. Современные   тенденции в подборе   рабочего вещества для   (ПКТН)                                              | 7                                                  |
|                 |                                                                                                                                                                |                                         | Тема 7. Особенности работы ПКТН на различных источниках низкопотенциальной теплоты. Примеры и особенности эксплуатации. | 7                                                  |
|                 |                                                                                                                                                                |                                         | <b>Тема 8.</b> Схемы и циклы ПКТН                                                                                       | 7                                                  |

## 2. Показатели и критерии оценивания компетенций, описание шкал оценивания

Таблица 2.1 – Показатели оценивания компетенций

| No        | Код        | Код и наименование | Контролируемые                  | Наимено-  |
|-----------|------------|--------------------|---------------------------------|-----------|
| $\Pi/\Pi$ | контроли-  | индикатора         | разделы (темы)                  | вание     |
|           | руемой     | достижения         | учебной                         | оценочных |
|           | компетенци | компетенции        | дисциплины,                     | средств   |
|           | И          |                    | практики                        |           |
| 1         |            |                    | <i>Тема 1.</i> История          | опрос     |
|           |            |                    | создания тепловых               |           |
|           |            |                    | насосов. Области                |           |
|           |            | ПК-9.1 Способен к  | применения.                     |           |
|           |            | проведению         | Классификация тепловых          |           |
|           |            | комплексных        | насосов.                        |           |
|           |            | испытаний новых    | <i>Тема 2</i> . Пароэжекторная  | опрос,    |
|           |            | технологий         | холодильная машина              | задачи,   |
|           |            | механизации,       | (ПХМ).                          | тесты     |
|           |            | автоматизации и    | <b>Тема 3</b> . Схема и принцип | опрос,    |
|           |            | роботизации        | действия абсорбционной          | задачи,   |
|           |            | промышленных линий | бромисто-литиевой               | реферат   |
|           |            | по производству    | холодильной машины              |           |
|           |            | пищевой продукции  | (АБХМ).                         |           |
|           | ПК-9       |                    | <b>Тема 4</b> . Схема и принцип | опрос,    |
|           |            |                    | действия водо-                  | задачи    |
|           |            |                    | аммиачной холодильной           |           |
|           |            |                    | машины или теплового            |           |
|           |            |                    | насоса (ВАХМ).                  |           |
|           |            | ПК-9.2 Умеет       | Тема 5.                         | опрос,    |
|           |            | разрабатывать      | Термодинамический               | задачи    |
|           |            | функциональную,    | расчет узлов                    |           |
|           |            | логистическую и    | теплоиспользующих XM            |           |
|           |            | техническую        | и ТН.                           |           |
|           |            | организацию        | <i>Тема 6.</i> Современные      | опрос     |
|           |            | процессов          | тенденции в подборе             |           |
|           |            | механизации,       | рабочего вещества для           |           |
|           |            | автоматизации и    | (ПКТН)                          |           |
|           |            | роботизации        | <i>Тема 7.</i> Особенности      | опрос,    |
|           |            | промышленных линий | работы ПКТН на                  | задачи,   |
|           |            | по производству    | различных источниках            | реферат   |
|           |            | пищевой продукции  | низкопотенциальной              |           |
|           |            |                    | теплоты. Примеры и              |           |
|           |            |                    | особенности                     |           |
|           |            |                    | эксплуатации.                   |           |
|           |            |                    | <i>Тема 8.</i> Схемы и циклы    | опрос,    |
|           |            |                    | ПКТН                            | тесты,    |
|           |            |                    |                                 | реферат   |

Таблица 2.2 – Критерии и шкала оценивания по оценочному материалу «Опрос»

| Шкала             | Критерии оценивания                                                 |
|-------------------|---------------------------------------------------------------------|
| оценивания        |                                                                     |
| (интервал баллов) |                                                                     |
| 7-10              | ответ дан на высоком уровне (обучающийся в полной мере ответил на   |
|                   | поставленный вопрос, привел аргументы в пользу своих суждений,      |
|                   | владеет профильным понятийным (категориальным) аппаратом и т.п.)    |
| 3-6               | ответ дан на среднем уровне (обучающийся в целом ответил на         |
|                   | поставленный вопрос, привел аргументы в пользу своих суждений,      |
|                   | допустив некоторые неточности и т.п.)                               |
| 0-3               | ответ дан на низком уровне (обучающийся допустил существенные       |
|                   | неточности, с ошибками, и т.п.); на неудовлетворительном уровне или |
|                   | не дан вовсе (обучающийся не готов, затрудняется ответить и т.п.)   |

Таблица 2.3 – Критерии и шкала оценивания по оценочному материалу «**Тесты**»

| Шкала оценивания  | Критерий оценивания                                        |
|-------------------|------------------------------------------------------------|
| (интервал баллов) |                                                            |
| 8-10              | ответы на тестовые задания показали высокий уровень знаний |
|                   | (правильные ответы даны на 90-100 % вопросов/задач)        |
| 5-7               | ответы на тестовые задания показали средний уровень знаний |
|                   | (правильные ответы даны на 75-89 % вопросов/задач)         |
| 1-4               | ответы на тестовые задания показали низкий уровень знаний  |
|                   | (правильные ответы даны на 60-74 % вопросов/задач)         |
| 0                 | ответы на тестовые задания показали неудовлетворительный   |
|                   | уровень знаний (правильные ответы даны менее чем 60 %)     |

Таблица 2.4 – Критерии и шкала оценивания по оценочному материалу«**Реферат**»

| Шкала оценивания  | Критерий оценивания                                       |
|-------------------|-----------------------------------------------------------|
| (интервал баллов) |                                                           |
| 8-10              | реферат выполнен на высоком уровне (учебно-               |
|                   | исследовательская тема раскрыта на 85-100 %)              |
| 5-7               | реферат выполнен на среднем уровне (учебно-               |
|                   | исследовательская тема раскрыта на 84-70 %)               |
| 1-4               | реферат выполнен на низком уровне (правильные ответы даны |
|                   | на 69-50 % вопросов/задач)                                |
| 0                 | реферат выполнен на неудовлетворительном уровне (учебно-  |
|                   | исследовательская тема раскрыта ниже 50 %)                |

Таблица 2.5 – Критерии и шкала оценивания по оценочному материалу «Задачи»

| Шкала оценивания | Критерий оценивания                                        |  |  |  |  |  |  |
|------------------|------------------------------------------------------------|--|--|--|--|--|--|
| 2                | решение задачи представлено на высоком уровне (обучающийся |  |  |  |  |  |  |
|                  | верно и в полной мере ответил на поставленные вопросы,     |  |  |  |  |  |  |
|                  | аргументированно пояснил свое решение, привел профильные   |  |  |  |  |  |  |
|                  | термины и дал им определения, и т.п.)                      |  |  |  |  |  |  |
| 1                | решение задачи представлено на среднем уровне (обучающийся |  |  |  |  |  |  |
|                  | в целом верно ответил на поставленные вопросы, допустив    |  |  |  |  |  |  |
|                  | некоторые неточности, и т.п.)                              |  |  |  |  |  |  |
| 0                | решение задачи представлено на низком уровне (обучающийся  |  |  |  |  |  |  |
|                  | допустил существенные неточности, ошибки, которые повлияли |  |  |  |  |  |  |
|                  | на результат и т.п.); на неудовлетворительном уровне       |  |  |  |  |  |  |
|                  | (обучающийся неверно решил задачу); или не решил вовсе     |  |  |  |  |  |  |

3. Перечень оценочных материалов

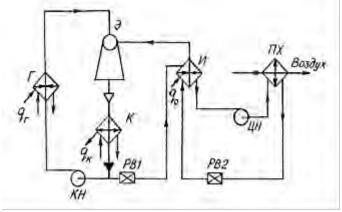
| <b>№</b> п/п | Наименование | Краткая характеристика оценочного        | Представление  |
|--------------|--------------|------------------------------------------|----------------|
|              | оценочного   | материала                                | оценочного     |
|              | материала    |                                          | материала      |
| 1. Опрос     |              | Средство контроля, организованное как    | Вопросы по     |
|              |              | специальная беседа преподавателя с       | темам/разделам |
|              |              | обучающимся на темы, связанные с         | учебной        |
|              |              | изучаемой учебной дисциплиной, и         | дисциплины     |
|              |              | рассчитанное на выяснение объема знаний  |                |
|              |              | обучающегося по учебной дисциплине или   |                |
|              |              | определенному разделу, теме, проблеме и  |                |
|              |              | т.п.                                     |                |
| 2.           | Тесты        | Система стандартизированных заданий,     | Фонд тестовых  |
|              |              | позволяющая автоматизировать процедуру   | заданий        |
|              |              | измерения уровня знаний и умений         |                |
|              |              | обучающегося.                            |                |
| 3.           | Задачи       | средство проверки, позволяющее оценивать | Комплект задач |
|              |              | и диагностировать знание фактического    |                |
|              |              | материала (базовые понятия, алгоритмы,   |                |
|              |              | факты) и умение синтезировать,           |                |
|              |              | анализировать, обобщать фактический и    |                |
|              |              | теоретический материал с                 |                |
|              |              | формулированием конкретных выводов,      |                |
|              |              | установлением причинно-следственных      |                |
|              |              | связей                                   |                |
| 4.           | Реферат      | Продукт самостоятельной работы студента, | Темы рефератов |
|              |              | представляющий собой краткое изложение   |                |
|              |              | в письменном виде полученных             |                |
|              |              | результатов теоретического анализа       |                |
|              |              | определенной научной (учебно-            |                |
|              |              | исследовательской) темы, где автор       |                |
|              |              | раскрывает суть исследуемой проблемы,    |                |
|              |              | приводит различные точки зрения, а также |                |
|              |              | собственные взгляды на нее.              |                |

## Перечень вопросов для опроса:

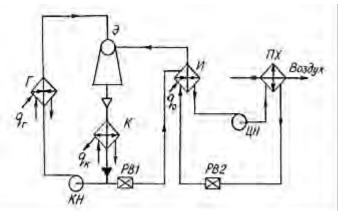
- 1. Термодинамические основы тепловых насосов.
- 2. Обратный цикл Карно. Физический смысл коэффициента теплотрансформации.
- 3. История создания тепловых насосов.
- 4. Термодинамический цикл теплового насоса.
- 5. Классификация тепловых насосов.
- 6. Парокомпрессионные тепловые насосы. Классификация.
- 7. Теплоиспользующие тепловые насосы. Классификация.
- 8. Современные рабочие вещества для XM и TH. Тенденции и перспективы использования.

- 9. Перечислите основные требования, предъявляемые к рабочим веществам парокомпрессорных тепловых насосов.
- 10.Изобразить простейшую схему пароэжекторной холодильной машины и ее процессы в диаграмме энтропия- энтальпия.
- 11.Перечислите источники необратимых потерь в эжекторе.
- 12. Составить тепловой баланс пароэжекторной машины и определить коэффициент, которым оценивается энергетическая эффективность машины.
- 13.Схема и принцип действия абсорбционной бромисто-литиевой холодильной машины.
- 14.Построение цикла абсорбционной бромисто-литиевой холодильной машины.
- 15. Методика расчета и подбора бромисто-литиевого теплового насоса.
- 16.В чем состоит принципиальное отличие термодинамических циклов повышающего и понижающего термотрансформаторов?
- 17. Как влияет на энергетическую эффективность термотрансформаторов изменение температур внешних источников теплоты?
- 18.Обосновать области применения абсорбционных бромисто-литиевых и водоаммиачных холодильных машин.
- 19. Изобразить схемы одноступенчатых бромистолитиевой и водоаммиачной абсорбционных холодильных машин, изобразить в соответствующих термодинамических диаграммах процессы и циклы.
- 20. Особенности действительных процессов в абсорбционной бромистолитиевой холодильной машины.
- 21. Составить тепловой баланс аппаратов и машин в целом определить коэффициент, которым оценивается энергетическая эффективность AXM
- 22.Почему в повышающем абсорбционном бромистолитиевом термотрансформаторе генератор выполняют оросительным, а в понижающем затопленным?
- 23.Перечислите основные факторы, влияющие на материалоемкость и сроки службы абсорбционных бромистолитиевых термотрансформаторов.
- 24.Схема и принцип действия водо-аммиачной холодильной машины или теплового насоса.
- 25.Построение цикла водо-аммиачной холодильной машины или теплового насоса
- 26. Методика расчета и подбора водо-аммиачного теплового насоса.
- 27. Источники низкопотенциальной теплоты для тепловых насосов.

- 28.Теплота из грунта /геотермальное тепло/, как источникн изкопотенциальной теплоты для тепловых насосов.
- 29. Теплота из скал /геотермальное тепло/, как источник низкопотенциальной теплоты для тепловых насосов.
- 30.Теплота из водоемов /геотермальное тепло/, как источник низкопотенциальной теплоты для тепловых насосов.
- 31. Воздушные тепловые насосы, как источник низкопотенциальной теплоты для тепловых насосов. Схемы.
- 32. Энергия солнца, как источник низкопотенциальной теплоты для тепловых насосов. Схемы.
- 33.Области применения тепловых насосов
- 34.Отопительные теплонасосные установки. Схемы.
- 35. Условия экономичности применения тепловых насосов.
- 36. Применение теплонасосных установок в технологических процессах.
- 37.Использование сбросной теплоты ТЭС. Схемы подключение ТН в систему оборотного водоснабжения ТЭС.
- 38.Использование тепловых насосов в турбинном цехе.
- 39. Применение тепловых насосов в выпарных и сушильных установках.
- 40. Использование тепловых насосов в пищевой промышленности.
- 41. Методика расчета и подбора парокомпрессионного теплового насоса.
- 42. Как влияет изменение температур внешних источников теплоты на термодинамическую эффективность парокомпрессорных тепловых насосов?
- 43. Какимипоказателямиоценивается энергетическая эффективность пароком прессорных тепловых насосов.
- 44. Какимэнергетическимпоказателемоценивается эффективность одновреме нногополучения холода и теплоты в парокомпрессорных тепловых насосах?
- 45. Какие группы основных уравнений используются при расчете характеристик парокомпрессорных тепловых насосов?


#### Тестовые задания:

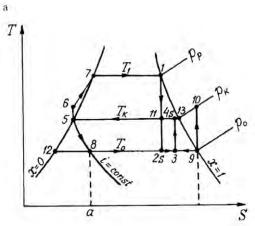
#### Модуль 1


#### 1. Что такое эжекция?

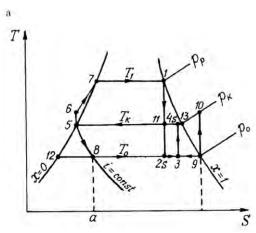
а) процесс смешения двух каких-либо сред,в котором одна среда, находясь под давлением, оказывает воздействие на другую и увлекает ее в требуемом направлении;

- б) это расширение газа при прохождении через дроссель местное сопротивление (вентиль, кран и т.д.), сопровождающее изменением температуры;
- в) переход вещества из газообразного состояния (пара) в жидкое или твердое состояние;
- г) образование кристаллов из расплавов, растворов, газовой фазы или плазмы, а также из аморфных веществ или кристаллов др. структуры.
- 2. На схеме пароэжекторной холодильной машины (ПЭХМ) обозначение «Г» соответствует...




- а)  $\Gamma$  греющий элемент;
- б)  $\Gamma$  генератор;
- в) Г- гидрант.
- 3. На схеме пароэжекторной холодильной машины обозначение «Э» соответствует...




- а) 9 эжектор;
- б) Э элемент греющий;
- в) Э электронагреватель.
- 4. На тепловой диаграмме теоретического совмещенного цикла ПЭХМ процесс 6-7-1 соответствует:



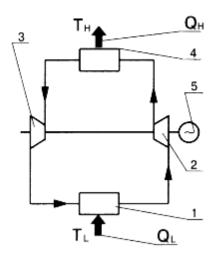
- а) адиабатной работе насоса, перекачивающего конденсат в парогенератор;
- б) дросселирование части конденсата, идущего в испаритель;
- в) процессам нагрева воды и парообразования в парогенераторе.
- 5. На тепловой диаграмме теоретического совмещенного цикла ПЭХМ прямой цикл будет изображаться процессами:



- a) 1 11 5 6 7 1;
- 6) 9 10 5 8 9;
- в) 3-4-5-8-9.
- 6. На тепловой диаграмме теоретического совмещенного цикла ПЭХМ **обратный** цикл будет изображаться процессами:

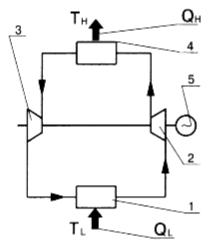


a) 
$$1 - 11 - 5 - 6 - 7 - 1$$
;

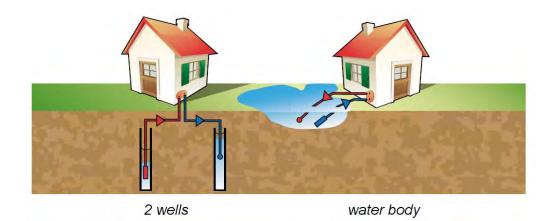

- 6) 9 10 5 8 9;
- в) 3-4-5-8-9.
- 7. Какому состоянию соответствует точка 1 на тепловой диаграмме теоретического совмещенного цикла ПЭХМ (см.вопрос 6)?
- а) насыщенная жидкость;
- б) влажный насыщенный пар;
- в) перегретый пар;
- г) сухой насыщенный пар.
- 8. Какой коэффициент используется для определения энергетической эффективности работы ПЭХМ?
- a) $\eta_{KAPHO}$ ;
- б) COP;
- в) тепловой коэффициент ζ;
- Γ) η<sub>ΟΤΤΟ.</sub>
- 9. Какому состоянию соответствует точка 8 на тепловой диаграмме теоретического совмещенного цикла ПЭХМ (см.вопрос 6)?
- а) влажный насыщенный пар;
- б)насыщенная жидкость;
- в) перегретый пар;
- г) сухой насыщенный пар.
- 10. Расход воды в конденсаторе пароэжекторной машины ...., чем в компрессорной.
- а) в 30...40 раза больше;
- б) в 3...4 раза больше;
- в) в 3...4 раза меньше.
  - 11. Что такое абсорбционная (или адсорбционная) холодильная система:
- а) система, в которой выработка холода осуществляется в результате испарения хладагента; абсорбер (адсорбер) поглощает пары хладагента, которые впоследствии выделяются из него при нагреве с повышением парциального давления и затем под этим давлением конденсируются при охлаждении;
- б) система, в которой выработка холода осуществляется в результате испарения хладагента при работе компрессора;
- в) система, в которой выработка холода осуществляется в результате поглощения хладагента при работе компрессора;
  - 12. Что такое холодильный агент (хладагент):
- а) рабочая среда, которая выделяет теплоту при низких значениях температуры и давления и поглощает теплоту при более высоких значениях температуры и давления. Этот процесс сопровождается изменением агрегатного состояния рабочей среды;

- б) рабочая среда, которая выделяет теплоту при низких значениях температуры и давления и поглощает теплоту при более высоких значениях температуры и давления. Этот процесс не сопровождается изменением агрегатного состояния рабочей среды;
- в) используемая в холодильной системе рабочая среда, которая поглощает теплоту при низких значениях температуры и давления и выделяет теплоту при более высоких значениях температуры и давления. Этот процесс сопровождается изменением агрегатного состояния рабочей среды.
- 13. Что является движущей силой в абсорбционной холодильной машине (AXM)?
- а) разность давлений пара хладагента в общем объеме и непосредственно у поверхности соприкосновения фаз, в жидкой фазе разность концентраций хладагента у поверхности контакта фаз и в общем объеме абсорбента;
- б) разность температур пара хладагента в общем объеме и непосредственно у поверхности соприкосновения фаз;
- в) разность энтальпии пара хладагента в общем объеме и непосредственно у поверхности соприкосновения фаз.
- 14.На какие две основные группы в зависимости от используемых в настоящее время в промышленных АХМ рабочих веществ их можно разделить
- а) водоаммиачные и хлористолитиевые;
- б) водоаммиачные и бромистолитиевые;
- в) хлористолитиевые и бромистолитиевые.
- 15. В абсорбционной холодильной машине (AXM) теплообмен осуществляется путем...
- а) только конвекции;
- б) только массопереносом;
- в) тепло-массообменом.
- 16. Вставьте нужный термин «при работе AXM .... периодически находится как в жидком, так и в парообразном состояниях, а .... только в жидком состоянии».
- а) хладагент... абсорбент;
- б) адсорбент... абсорбент;
- в) абсорбент... хладагент.
- 17. В теоретическом цикле абсорбционной бромистолитиевой холодильной машины (АБХМ) с одноступенчатой генерацией пара вода выступает как...
- а) адсорбер;
- б) абсорбером;
- в) рабочее вещество.

- 18. Какой процесс осуществляется в абсорбере АХМ?
- а) изохорный;
- б) эндотермический;
- в) изоэнтальпный;
- г) экзотермический.
  - 19. Что является показателем эффективности работы АБХМ?
- a) $\eta_{KAPHO}$ ;
- б) COP;
- в) коэффициент трансформации ζ;
- Γ) η<sub>ΟΤΤΟ.</sub>
  - 20. Какие элементы включает в себя пароэнергетическая установка?
- а) испаритель, компрессор, конденсатор, ТРВ;
- б) парогенератор, эжектор, конденсатор и насос;
- в) испаритель, абсорбер, конденсатор, ТРВ.
- 21. Из работ какого ученого вытекает принцип работы теплового насоса?
- а) Из работ и разработок Бойля-Мариотта
- б) Из работ Томсона
- в) Из работ и опытов Ренкина
- г)Из описания цикла ГТУ
- д) Из работ Карно и описания цикла Карно, опубликованного в его диссертации в 1824 г.
  - 22. Практическую теплонасосную систему предложил ... .
- а)Ренкин
- б)Вильям Томсон (лорд Кельвин)
- в)С.Карно
- г) Гей-Люссак
- д)И.Ньютон
- 23. Практическая теплонасосная система, предложенная Вильямом Томсоном была названа ... .
- а) "умножитель тепла" и показывала, как можно холодильную машину эффективно использовать для целей отопления;
- б) системой отопления;
- в) системой подогрева горячей воды;
- г) системой преобразования энергии;
- д) системой обратимого использования нетрадиционной энергии.

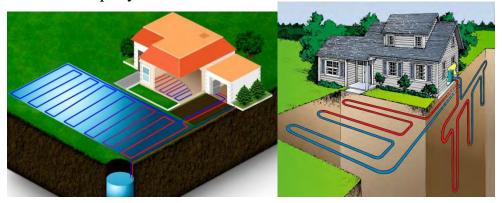

## 24. На принципиальной схеме теплового насоса цифрой 1 обозначен ... .

- а) конденсатор;
- б) испаритель;
- в) турбокомпрессор;
- г) расширительная машина.




25. На принципиальной схеме теплового насоса цифрой2обозначен ... .

- а) конденсатор;
- б) испаритель;
- в) турбокомпрессор;
- г) расширительная машина.




26. На рисунке приведена схема ... теплового насоса.



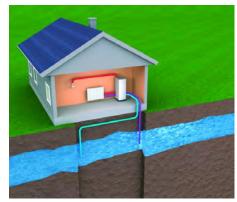
- а) открытого цикла;
- б) закрытого цикла;
- в) необратимого цикла.

## 27. На рисунках показан тепловой насос типа ...



- а) грунт-воздух;
- б) вода-грунт;
- в) грунт-вода;
- г) воздух –вода.

## 28. На рисунке показан тепловой насос типа ...






- а) грунт-воздух;
- б) вода-грунт;
- в) грунт-вода;
- г) воздух -вода.

## 29. На рисунке показан тепловой насос типа ...

- а) вода-вода;
- б) вода-грунт;
- в) грунт-вода;
- г) воздух –вода.



30. Фреоны, содержащие в молекуле

атомы фтора, хлора и водорода, обозначены как...

- а) ГХФУ (гидрохлорфторуглероды или НСГС);
- б) ГФУ (гидрофторуглероды, НFС);
- в) хлорфторуглеродыили СFC хладагенты;
- г) R 22.
- 31. В каком году на международной конференции полномочных представителей 55 стран мира был принят Монреальский протокол к Венской конвенции ООН по веществам, разрушающим озоновый слой?
- a) 1996г.;
- б) 1987г.;
- в) 2007г.;
- г) 2017г.
- 32. К какой группе относятся холодильные агенты такие, как R402A, R409B, R 411A?
- а) природных х.а.;
- б) озоноразрушающих х.а;
- в) переходные х.а.;
- г) однокомпонентные х.а.
- 33. К какой группе относятся холодильные агенты такие, как R600A, R744, R 729, R 717?
- а) природных х.а.;
- б) озоноразрушающих х.а;
- в) переходные х.а.;
- г) однокомпонентные х.а.
- 34. Для эффективной оценки влияния холодильной системы на климат введен так называемый общий коэффициент эквивалентного потеплення, который обозначается как
- a) COP.;
- δ)η<sub>KAPHO</sub>;
- в) коэффициент трансформации ζ;
- г) коэффициент TEWI.
  - 35. Какие холодильные агенты относится к х.а. четвертого поколения?
- a) R1234yf, R1234ze (E), R1336 mzz, R1233zd
- б R402A, R409B, R 411A;
- в) R22, R12, R 11;
- г).R134a, R441A.
  - 36. Недостатком диоксида углерода R744 считают ...
- а) высокую стоимость 1 литра х.а.;
- б) низкую нормальную температуру кипения, обусловливающую высокий уровень давлений в системе;
- в) горючесть;
- г) воспламеняемость.

- 37. Какие холодильные агенты относится к х.а. третьего поколения?
- a) R1234yf, R1234ze (E), R1336 mzz, R1233zd
- б) R402A, R409B, R 411A;
- в) R22, R12, R 11;
- г) R134a, R744.
  - 38. Какая предельная допустимая концентрация аммиака в воздухе?
- a)  $25 \text{ MF/M}^3$ ;
- б) 125 мг/м $^{3}$ ;
- в)  $0.25 \text{ мг/м}^3$ ;
- г) 1,25 мг/м $^3$ .
- 39. В чиллерах, тепловых насосах, бытовых холодильных приборах вместо R134a рекомендуется использовать...
- a) R1234ze (E);
- б) R409B;
- в) R22;
- г) R12.
- 40. По классификации производительности (кВт) к бытовым ТН относятся ...
- а) от 20 кВт до 600 кВт
- б)от 5 кВт до 20 кВт;
- в) от 1 МВт и выше.
- 41. До какой температуры способны нагревать воду бытовые тепловые насосы типа«воздух вода»?
- a) 70-80°C
- б)50-60 °С;
- в)35–40 °C.
  - 42. Высокотемпературные ТН обеспечивают нагрев воды
- а) до 40 ...45 °С;
- б)до 45...55 °С;
- в) до 35... 40 °С;
- г) до 70...95°C.
  - 43. По какой формуле определяется удельная тепловая загрузка ТН:
- a)  $q_{mH} = q_{\kappa} = q_u + l_{cx}$ ;
- $q_u = q_{\kappa}$
- в)  $l_{c = c} = h_2 h_1$ :
- $\eta_a = 0.98 \frac{273 + t_0}{273 + t_\kappa}$ 
  - 44. По какой формуле определяется удельная работа сжатия в ТН:

$$a) q_{mH} = q_{\kappa} = q_u + l_{cm};$$

$$q_u = q_{\kappa}$$

B) 
$$l_{cx} = h_2 - h_1$$
:

$$\eta_a = 0.98 \frac{273 + t_0}{273 + t_\kappa}$$

45. По какой формуле определяется адиабатный КПД компрессора в ТН?

a) 
$$q_{mH} = q_{\kappa} = q_u + l_{cx}$$
;

$$q_u = q_{\kappa}$$

в) 
$$l_{c = c} = h_2 - h_1$$
:

$$\eta_a = 0.98 \frac{273 + t_0}{273 + t_\kappa}$$

46. По какой формуле определяется коэффициент преобразования теплоты (коэффициент трансформации)?

a) 
$$q_{mH} = q_{\kappa} = q_u + l_{cx}$$
;

$$q_u = q_{\kappa}$$

в) 
$$l_{cж} = h_2 - h_1$$
:

$$_{\Gamma}$$
)  $\zeta = \frac{q_{mH}}{l_{conc}}$ .

47. По какой формуле определяется эксергетический КПД теплового насоса?

a) 
$$q_{mH} = q_{\kappa} = q_u + l_{cx}$$
;

$$\eta_{9} = \frac{e_{\scriptscriptstyle B}}{e_{\scriptscriptstyle H} + e_{\scriptscriptstyle 9}};$$

в) 
$$l_{c \to c} = h_2 - h_1$$
:

48. Какую термодинамическую диаграмму используют для построения циклов ТН?

- а) і-d диаграмма;
- б) h-d диаграмма;
- в) logp-h диаграмма;
- г)х-у диаграмма.

- 49. Какому состоянию холодильного агента на фазовых диаграммах состояния соответствует линия x=1?
- а) влажный насыщенный пар;
- б) перегретый пар;
- в) насыщенная жидкость;
- г) сухой насыщенный пар.
- 50. Согласно второму закону термодинамики, коэффициентом производительности или коэффициентом трансформации холодильной машины является:

a) 
$$COP = \frac{q_{omb}}{l_{3amp}} \rangle 1$$
;

$$6) COP = \frac{q_{omb}}{l_{samp}} = 1;$$

B) 
$$COP = \frac{q_{oms}}{l_{3amp}} \langle 1.$$

#### Перечень тем рефератов:

- 1. Современные тенденции в проектировании теплоиспользующих ХМ и ТН.
- 2. Современное состояние вопроса применения холодильных агентов нового поколения для XM и TH.
- 3. Схемы и области применения абсорбционных бромисто-литиевых холодильных машин.
- 4. Схемы и области применения абсорбционных водоаммиачных холодильных машин.
- 5. В чемсостоитпринципиальноеотличиетермодинамическихцикловповышающего и понижающего термотрансформаторов?
- 6. Как влияет на энергетическую эффективность термотрансформаторов изменение температур внешних источников теплоты?
- 7. Обосновать области применения абсорбционных бромисто-литиевых и водоаммиачных холодильных машин.
- 8. Изобразить схемы одноступенчатых бромистолитиевой и водоаммиачной абсорбционных холодильных машин, изобразить в соответствующих термодинамических диаграммах процессы и циклы.
- 9. Особенности действительных процессов в абсорбционной бромистолитиевой холодильной машины.
- 10. Составить тепловой баланс аппаратов и машин в целом определить коэффициент, которым оценивается энергетическая эффективность АХМ.
- 11. Альтернативные холодильные машины с комбинированными термодинамическими циклами.
- 12. Методика энергетического анализа холодильных машин и ТН.
- 13. Бинарные схемы тепловых насосов.

- 14. Схемы подключения ТН в системы горячего водоснабжения административных зданий. Примеры.
- 15. Схемы подключения ТН в системы горячего водоснабжения бытовых комплексов. Примеры.
- 16. Показатели эффективности работы ТН и методы ее повышения.
- 17. Состояние вопроса применения теплоиспользующих XM и TH в России и за рубежом.
- 18. Нормативная база, регламентирующая применение теплоиспользующих XM и TH.
- 19. Нормативная база, регламентирующая применение холодильных агентов, как рабочих тел XM и TH.
- 20. Принцип работы комбинированных схем ТН-градирня в системах водоснабжения.

#### Задачи для контрольной работы

| 1.    | Рассчитать   | теоретический   | цикл   | пароэжекторной                       | холодильной                      | машины, |
|-------|--------------|-----------------|--------|--------------------------------------|----------------------------------|---------|
| прини | имая следую  | щие исходные да | инные* | :                                    |                                  |         |
| Xo.   | лодопроизво  | дительность     |        | $Q_0$ ,                              | :Вт;                             |         |
| Ten   | мпература ки | пения воды в ис | парите | ле <i>t</i> <sub>0</sub> ,°С         | ;                                |         |
| Ten   | мпература ки | пения воды в па | рогене | $p$ аторе $t_p = t$                  | $t_h, {}^{\mathrm{o}}\mathrm{C}$ |         |
| Ten   | ипература ко | нденсации воды  | в гене | раторе $t_{\kappa}$ , ${}^{\circ}$ С | ·                                |         |
| По    | строить цикл | і работы ПЭХМ   | внести | данные узловых т                     | очек в таблицу                   |         |

Таблица – Параметры узловых точек цикла

| параметр          | точки |            |   |    |    |   |  |
|-------------------|-------|------------|---|----|----|---|--|
|                   | 1     | 2 <i>s</i> | 3 | 4s | 5  | 6 |  |
| $p$ , к $\Pi$ а   |       |            |   |    |    |   |  |
| t, °C             |       |            |   |    |    |   |  |
| <i>i</i> , кДж/кг |       |            |   |    |    |   |  |
| параметр          | 7     | 8          | 9 | 10 | 11 |   |  |
| <i>p</i> , кПа    |       |            |   |    |    |   |  |
| t, °C             |       |            |   |    |    |   |  |
| <i>i</i> , кДж/кг |       |            |   |    |    |   |  |

| 2.  | Рассчитать     | теоретический   | цикл     | абсорбционной     | бромистолитиевой |
|-----|----------------|-----------------|----------|-------------------|------------------|
|     | холодильной    | машины, приним  | ая следу | ующие исходные да | нные*:           |
| Тем | ипература грег | ющей среды      |          | $t_h$ , °C;       |                  |
| Тем | ипература охл  | аждающей среды  |          | $t_{o.c}$ , °C;   |                  |
| Тем | ипература охл  | ажденной среды  |          | $t_s$ , °C.       |                  |
| По  | строить цикл р | работы АБХМ вне | ести дан | ные узловых точек | в таблицу        |
|     |                |                 |          |                   |                  |

Таблица – Параметры узловых точек цикла

| параметр       | точки |   |   |    |   |   |   |   |   |
|----------------|-------|---|---|----|---|---|---|---|---|
|                | 1'    | 2 | 3 | 3' | 4 | 5 | 6 | 7 | 8 |
| <i>p</i> , кПа |       |   |   |    |   |   |   |   |   |
| t, °C          |       |   |   |    |   |   |   |   |   |
| i,             |       |   |   |    |   |   |   |   |   |
| кДж/кг         |       |   |   |    |   |   |   |   |   |
| ξ, %           |       |   |   |    |   |   |   |   |   |

- 3. Выполнить расчет кожухотрубного элементного ТОА растворов водоаммиачной абсорбционной холодильной машины производительностью  $Q_0$  ,кВт, если заданы следующие параметры: внутренний диаметр трубы  $d_{\rm BH}$ , м; наружный диаметр трубы  $d_{\rm H}$ , м; внутренний диаметр обечайки кожухотрубного элемента  $D_{\rm BH}$ , м; длина трубы вместе с трубными досками l, м. (При расчете рекомендовано использовать методику проф. Сакуна И.А).
- 4. Выполнить расчет теплонасосной установки для отопления индивидуального жилого дома. В качестве источника низкопотенциальной теплоты использовать грунт. Система отопления водяной «теплый пол». В качестве хладагента использовать фреон R152a, относящийся к озонобезопасным.

Исходные данные для расчета:

- 5. Выполнить расчет теплонасосной установки для отопления индивидуального жилого дома. В качестве источника низкопотенциальной теплоты использовать технологическую воду. Система отопления водяной «теплый пол». В качестве хладагента использовать фреон R142b.

Исходные данные для расчета:

программы REFROF или CoolPack 4.19

## 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков

Опрос позволяет оценить знания и кругозор обучающегося, умение построить ответ, владение монологической речью логически коммуникативные навыки. Опрос как важнейшее средство развития мышления и речи обладает большими возможностями воспитательного воздействия преподавателя. Обучающая функция состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к зачёту.

Критериями оценки устного ответа являются: полнота представленной информации, логичность выступления, наличие необходимых разъяснений и использование формул и/или определений по ходу ответа, привлечение материалов современных научных публикаций.

Для оценки знаний обучающихся используют **тестовые задания** в закрытой форме, когда испытуемому предлагается выбрать правильный ответ из нескольких возможных. Каждый тест содержит 4 варианта ответа, среди которых только один правильный. Результат зависит от общего количества правильных ответов, записанных в бланк ответов.

**Реферат** как продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде (до 15 стр.) полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее. Раскрытие темы, предложенной в реферате, оценивается по 10-й шкале.

Письменная проверка знаний в виде решения задач осуществляется в аудиторнойформе. Во время проверки и оценки задач проводится анализ результатов выполнения, выявляются типичные ошибки, а также причины их появления. Анализ задач проводится оперативно. При проверке задач преподаватель исправляет каждую допущенную ошибку и определяет полноту ответа, учитывая при этом четкость и последовательность изложения мыслей, наличие и достаточность пояснений, знания терминологии в предметной области. Решение задач оценивается по двухбалльной шкале.

**Контрольная работа** по учебной дисциплине выполняется в аудиторной форме по итогам изучения каждого смыслового модуля. Аудиторная контрольная работа предполагает решение конкретной технической задачи по вариантам.

Время решения каждой задачи ограничивается 45 минутами. Критериями оценки такой работы становятся: использование системных единиц измерения, понимание заданного условия и использования в ответе правильных формул и нужных диаграмм (при необходимости), грамотность, логическая последовательность изложения решения. Контрольная работа оценивается по десятибалльной шкале.