Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна

Должность: Проректор по учебно-методической работе Дата подписания: 2 \(\lambda 10.2025 \) 14:31:03

Уникальный програм МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ b066544bae1e449cd8bfce392f7224a676a271b2**РОСС**ИЙСКОЙ ФЕДЕРАЦИИ

(МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ТЕХНОЛОГИИ И ОРГАНИЗАЦИИ ПРОИЗВОДСТВА ПИЩЕВЫХ ПРОДУКТОВ ИМЕНИ КОРШУНОВОЙ А.Ф.

УТВЕРЖДАЮ

Зав. кафедрой

К.А. Антошина

>>

2025 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.02.02 МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ТЕХНОЛОГИИ **ОТРАСЛИ**

Укрупненная группа направления подготовки 19.00.00 Промышленная экология и биотехнология

Программа высшего профессионального образования –программа бакалавриата Направление подготовки 19.03.03 Продукты питания животного происхождения Профиль: Технология мяса и мясопродуктов

Факультет ресторанно-гостиничного бизнеса

Курс, форма обучения:

очная форма обучения 3 курс

заочная форма обучения 5 курс

Разработчик:

Доцент

Корнийчук В.Г.

ОМ рассмотрены и утверждены на заседании кафедры от «02» 02 2025 г., протокол № 19

> Донецк 2025

1. Паспорт

оценочных материалов по учебной дисциплине «МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ТЕХНОЛОГИИ ОТРАСЛИ»

Перечень компетенций, формируемых в результате освоения учебной дисциплины

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые разделы (темы) учебной дисциплины (модуля)	Этапы формирования (семестр изучения)
1	2 ПК-2	3	4 T1 M	5
1		Проводит	Тема1. Методы исследования и анализа	0
		исследования по	процессов и оборудования пищевых	
		повышению	производств.	
		эффективности	Тема 2. Физическое моделирование.	
		технологических	Тема 3. Математическое моделирование.	
		процессов	Тема 4. Постановка задачи оптимизации.	
		производства	Тема 5. Оптимизация функции одной	
		высококачественных	переменной.	
		безопасных продуктов	Тема 6. Численные методы минимизации функции одной переменной.	
		питания животного	Тема 7. Оптимизация функции	
		происхождения	нескольких переменных.	
			Тема 8. Численные методы минимизации	
			функции нескольких переменных.	
			Тема 9. Линейное программирование.	
			Далее - Onpoc u/ или тестирование по	
			теоретической части курса	
			Выполнение, оформление и защита	
			лабораторных работ	

2. Показатели и критерии оценивания компетенций, описание шкал оценивания Таблица 2.1 — Показатели оценивания компетенций

1 40	лица 2.1	— Показатели оценивания компетенции		
№ п/п	контрол	Код и наименование индикатора достижения компетенции	Контролируемые разделы (темы) учебной дисциплины (модуля)	Наименование оценочного материала
1	2	3	4	5
1	ПК-2	ИДК -1 _{ПК-2} Подготавливает предложения	Тема1. Методы исследования и анализа процессов и	Тестирование
		по повышению эффективности	оборудования пищевых производств.	,Устный
		производства, в частности внедрения	Тема 2. Физическое моделирование.	опрос
		безотходных и малоотходных технологий	Тема 3. Математическое моделирование.	(доклад).
		переработки животного сырья	Тема 4. Постановка задачи оптимизации.	Защита
		ИДК -2 _{ПК-2} Моделирует	Тема 5. Оптимизация функции одной переменной.	лабораторных
		технологические процессы производства	Тема 6. Численные методы минимизации функции	работ
		продуктов питания животного	одной переменной.	
		происхождения на базе стандартных	Тема 7. Оптимизация функции нескольких переменных.	
		пакетов прикладных программ	Тема 8. Численные методы минимизации функции	
		ИДК -3 _{ПК-2} Осуществляет статистическую		
		обработку экспериментальных данных	Тема 9. Линейное программирование Далее - Onpoc u/	
		для анализа технологических процессов	или тестирование по теоретической части курса.	
		при производстве продуктов питания	Выполнение, оформление и защита практических	
		животного происхождения. Делает	работ	
		выводы и применяет		
		их в практике		

Таблица 2.2 – Критерии и шкала оценивания по оценочному материалу «Реферат»

таолица 2.2 терите	лии и шкала оценивания по оцено-тому материалу <u>«геферат»</u>					
Шкала оценивания	Критерий оценивания					
0,91∙балл,	Реферат представлен на высоком уровне					
выделенный на тему,	(полное соответствие требованиям наличия элементов научного					
которая	творчества, самостоятельных выводов, аргументированной критики и					
отрабатывается в	самостоятельного анализа фактического материала на основе глубоких					
виде реферата	знаний информационных источников по данной теме).					
0,750,89·балл,	Реферат представлен на среднем уровне					
выделенный на тему,	(малодоказательные отдельные критерии при общей полноте раскрытия					
которая	темы).					
отрабатывается в						
виде реферата						
0,60,74-балл,	Реферат представлен на низком уровне					
выделенный на тему,	(правильно, но неполно, без иллюстраций, освещены основные вопросы					
которая	темы и содержатся отдельные ошибочные положения).					
отрабатывается в						
виде реферата						
0	Реферат представлен на неудовлетворительном уровне или не представлен					
	(студент не готов, не выполнил задание и т.п.)					

Таблица 2.3 – Критерии и шкала оценивания по оценочному материалу «Тест»

Шкала оценивания	Критерий оценивания			
0,91 балл, выделенный	Тесты выполнены на высоком уровне (правильные ответы даны на 90-			
на тест к модулю	100% вопросов)			
0,750,89·балл, выделенный на тест к модулю	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% вопросов)			
0,60,74·балл, выделенный на тест к модулю	Тесты выполнены на низком уровне (правильные ответы даны на 60-74% вопросов)			
0	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем 60%)			

Таблица 2.4 — Критерии и шкала оценивания по оценочному материалу «Контрольная работа» (для студентов з.ф.о. или студентов, работающих по индивидуальному графику)

Шкала оценивания	Критерий оценивания				
13,5-15	Контрольная работа выполнена на высоком уровне				
13,3-13	(правильные ответы даны на 90-100% вопросов/задач)				
11,25-13,5	Контрольная работа выполнена на среднем уровне				
11,23-13,3	(правильные ответы даны на 75-89% вопросов/задач)				
9-11,25	Контрольная работа выполнена на низком уровне				
9-11,23	(правильные ответы даны на 60-74% вопросов/задач)				
0	Контрольная работа выполнена на неудовлетворительном уровне				
U	(правильные ответы даны менее чем 60%)				

Таблица 2.5 – Критерии и шкала оценивания по оценочному материалу <u>«Собеседование»</u>

(«Устный опрос» или «Доклад»)

Шкала оценивания	Критерии оценивания			
0,91-балл,	Собеседование (доклад) с обучающимся (обучающегося) на темы,			
выделенный на тему	связанные с изучаемой учебной дисциплиной, и выяснение высокого			
	объема знаний обучающегося по учебной дисциплине, определенному			
	разделу, теме, проблеме и т.п.			
0,750,89-балл,	Собеседование (доклад) с обучающимся (обучающегося) на темы,			
выделенный на тему	связанные с изучаемой учебной дисциплиной, и выяснение среднего			
	объема знаний обучающегося по учебной дисциплине, определенному			
	разделу, теме, проблеме и т.п. (студент в целом осветил рассматриваемую			
	проблематику, допустив некоторые неточности и т.п.)			
0,60,74-балл,	Собеседование (доклад) с обучающимся (обучающегося) на темы,			
	связанные с изучаемой учебной дисциплиной, и выяснение низкого уровне			
	знаний обучающегося по учебной дисциплине, определенному разделу,			
	теме, проблеме и т.п. (студент допустил существенные неточности,			
	изложил материал с ошибками и т.п.)			
0	При собеседовании (докладе) с обучающимся (обучающегося) выявлен			
	объем знаний на неудовлетворительном уровне (студент не готов)			

Примечание:

- 1. Конкретные баллы на отдельные виды работ (тема, тестирование, лабораторная или практическая работа) указаны в рабочей программе учебной дисциплины на учебный год.
- 2. Баллы могут отличаться для очной и заочной форм обучения, конкретной темы, лабораторной работы или теста к содержательному модулю.

3. Перечень оценочных материалов

$N_{\underline{0}}$	Наименование	Краткая характеристика оценочного материала	Представление
Π/Π	оценочного		оценочного
	материала		материала
1	Отчет по	Продукт самостоятельной работы студента,	Оформление
	практической	представляющий собой краткое изложение в	отчета по
	работе	письменном виде полученных результатов	практическим
		экспериментальных или теоретических	работам (РГР)
		исследований по определенной научной (учебно-	согласно
		исследовательской) теме,	требованиям,
		где автор раскрывает суть исследуемой	изложенным в
		проблемы, приводит различные точки зрения,	практикуме
		а также собственные взгляды на нее.	(тетрадь)
	D 1		
	Реферат		Реферат
			(формат А4)
2	Тесты	система стандартизированных заданий,	Фонд тестовых
		позволяющая автоматизировать процедуру	заданий
		измерения уровня знаний и умений	
	обучающегося.		
3	Контрольная	средство проверки умений применять	Комплект
	работа	полученные знания для решения задач	контрольных
		определенного типа по теме, разделу или	заданий по

		учебной дисциплине.	вариантам
			(методические указания к СРС)
4	Собеседование	продукт самостоятельной работы обучающегося,	Темы курса
	(Устный опрос)	представляющий собой публичное выступление	
	Доклад	по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской или научной темы	Темы докладов

3.1. Темы рефератов:

- 1. Математическое моделирование процессов абсорбции.
- 2. Математическое моделирование процесса сушки пищевых продуктов.
- 3. Математическое моделирование процесса измельчения.
- 4. Математическое моделирование процесса смешения.
- 5. Математическое моделирование процессов прессования.
- 6. Математическое моделирование процессов классификации.
- 7. Математическое моделирование процессов абсорбции.
- 8. Математическое моделирование процесса сушки пищевых продуктов.
- 9. Математическое моделирование процесса измельчения.
- 10. Математическое моделирование процесса смешения.
- 11. Методы статической оптимизации.
- 12. Безградиентные методы оптимизации.
- 13. Градиентные методы оптимизации.
- 14. Оптимизация состава сырья.
- 15. Симплекс метод.

3.2 ВОПРОСЫ К КОНТРОЛЬНОЙ РАБОТЕ

- 1. Численные методы оптимизации функции нескольких переменных
- 2. Моделирование и виды моделей
- 3. Виды математических моделей
- 4. Этапы разработки математических моделей
- 5. Составление математического описания объекта
- 6. Моделирование механических процессов
- 7. Моделирование тепловых процессов
- 8. Моделирование массообменных процессов
- 9. Моделирование гидромеханических процессов
- 10. Задачи оптимизации технологических процессов пищевых производств
- 11. Методы оптимизации технологических процессов пищевых производств
- 12. Этапы решения задачи оптимизации технологических процессов пищевых

производств

- 13. Критерии оптимизации
- 14. Технологические критерии оптимизации
- 15. Экономические критерии оптимизации
- 16. Характеристика методов решения задач оптимизации
- 17. Активный эксперимент
- 18. Пассивный эксперимент
- 19. Физическое моделирование
- 20. Использование математических моделей
- 21. Анализ технологического процесса
- 22. Понятие «системный подход», «системные исследования», «системный анализ», их возможности в научных исследованиях
- 23. Значение эксперимента в моделировании технологических объектов
- 24. Сущность оптимизации
- 25. Многокритериальная оптимизация.
- 26. Методы оптимизации функции одной переменной
- 27. Методы оптимизации функции нескольких переменных
- 28. Условия применения методов интенсификации и оптимизации процессов с учетом специфики технологических операций
- 29. Методы оптимизации не использующие производные
- 30. Методы оптимизации использующие производные

3.3. ОЦЕНОЧНЫЙ МАТЕРИАЛ «ТЕСТОВЫЕ ЗАДАНИЯ»

- 1. Критерий, характеризующий процесс теплообмена между теплоносителем и поверхностью стенки:
- а) Нусельта
- б) пекле
- в) Прандтля
- г) Фурье
- 2. Критерий, характеризующий физические свойства теплоносителя:
- а) Био
- б) Прандтля
- в) пекле
- г) Грасгофа
 - 3. Критерий, характеризующий режим движения пленки конденсата под действием силы тяжести:
- а) Рейнольдса
- б) Галилея
- в) Архимеда
- г) Эйлера
- 4. Критерий, характеризующий процесс фазового превращения при

конденсации пара:

- а) Био
- б) Кутателадзе
- в) Грасгофа
- г) Пекле
- 5. Критерий, характеризующий соотношение сил инерции и сил давления в системе:
- а) Эйлера
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 6. Критерий, характеризующий соотношение сил инерции и силы тяжести:
- а) Ньютона
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 7. Критерий, характеризующий соотношение сил инерции и сил вязкого трения:
- а) Эйлера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 8. Какая теорема подобия определяет необходимые и достаточные условия для подобных явлений:
- а) первая
- б) вторая
- в) третья
- г) все
- 9. Если отношение всех подобных размеров сравниваемых аппаратов является величиной постоянной, то это:
- а) сходство физических величин;
- б) временная сходство;
- и) геометрическое подобие;
- г) сходство начальных и граничных условий.
- 10. В расчетах тепловых аппаратов критерий Нусельта определяют для:
- а) определение толщины стенки аппарата;
- б) определение коэффициента теплоотдачи;
- в) определение коэффициента теплопроводности;
- г) определение средней температуры теплоносителя.
- 11. Критерий, характеризующий соотношение сил притяжения и молекулярного трения (вязкости) в потоке:
- а) Рейнольдса
- б) Ньютона
- в) Галилея
- г) Пекле

- 12. Критерий, характеризующий соотношение сил инерции и сил давления в системе:
- а) Эйлера
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 13. Критерий, характеризующий соотношение сил инерции и силы тяжести:
- а) Ньютона
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 14. Критерий, характеризующий взаимодействие архимедова силы, возникающей при разнице плотностей среды и силы вязкого трения:
- а) Эйлера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 15. Критерий, характеризующий отношение сил гидромеханического оздействия на каплю жидкости в силу поверхностного натяжения:
- а) Вебера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 16. Критерий, характеризующий скорость, которую приобретает тело при колебательном воздействии на него окружающей среды:
- а) Вебера
- б) Рейнольдса
- в) Струхаля
- г) Галилея

Математическое моделирование процессов на базе фундаментальных законов.

- 1. Математическое моделирование это:
- а) совокупность математических зависимостей, которые отражают в явной форме суть технологического процесса;
- б) совокупность программ для ЭВМ;
- в) совокупность алгоритмов расчета процессов и оборудования;
- Γ) совокупность методик экспериментального определения параметров процесса.
- 2. Математическое моделирование является основой для создания:
- а) система автоматизированного проектирования (САПР)
- б) автоматизированных систем управления технологическими процессами (АСУТП)
- в) автоматизированных систем управления (АСУ);
- г) все ответы правильные.
- 3. В стадий математического моделирования не входит:
- а) доказательство принципиальной возможности производства;

- б) постановка задачи;
- в) построение модели на основе математического описания физико-химических закономерностей;
- г) разработка алгоритмов и программ для ЭВМ.
- 4. Математическое моделирование не позволяет:
- а) с помощью одного устройства (ЭВМ) осуществлять решения целого класса задач;
- б) моделирование по "элементарным" процессам;
- в) сэкономить время и средства по сравнению с методом физического моделирования;
- г) визуально следить за ходом процесса.
- 5. В ходе математического моделирования НЕ решаются следующие задачи:
- а) регистрация наблюдений без преобразующих устройств;
- б) установление связей между параметрами процесса;
- в) реализации математического описания;
- г) проверка адекватности математической модели процесса.
- 6. В "элементарных" процессов технологического процесса относятся:
- а) химические преобразования;
- б) перемещение вещества;
- в) перемещение теплоты и массы;
- г) все ответы правильные.
- 7. Если основные переменные процесса не изменяются в пространстве, а заменяются только во времени, то математические модели называются:
- а) моделями с сосредоточенными параметрами;
- б) моделями с распределенными параметрами;
- в) физическими моделями;
- г) геометрическими моделями.
- 8. Полная математическая модель процесса это:
- а) динамическая модель;
- б) статистическая модель;
- в) модуль с распределенными параметрами;
- г) совокупность статической и математической модели с ограниченными и дополнительными условиями.
- 9. Динамическая модель, как правило описывается:
- а) алгебраическими уравнениями;
- б) дифференциальными уравнениями;
- в) эмпирическими уравнениями;
- г) интегральными уравнениями.
- 10. В основе феноменологического метода описания систем лежит:
- а) интегральное уравнение сохранения и переноса физической субстанции;
- б) уравнение Гиббса, для изменения энтропии многокомпонентных систем;
- в) уравнение Онзагера;
- г) система эмпирических уравнений.

Статистические математические модели процессов.

1. Статистические модели используются:

- а) когда объект мало изучен или очень сложный;
- б) когда известна внутренняя структура объекта;
- в) когда достаточно теоретических сведений об объекте;
- г) когда объект хорошо изучен и является математическое описание в виде эмпирических зависимостей.
- 2. Для построения статистических математических моделей динамики процесса, как правило, используют:
- а) уравнение регрессии;
- б) дифференциальные уравнения;
- в) случайные функции;
- г) тепловой и материальный балансы.
- 3. При использовании статистических моделей:
- а) получаем связь исходной величины с входными факторами без раскрытия внутренней структуры объекта;
- б) получаем связь исходной величины с входными факторами с раскрытием внутренней структуры объекта;
- в) раскрываем внутреннюю структуру объекта без установления связи исходной величины с входными факторами;
- г) нет правильного ответа.
- 4. Пассивный эксперимент это:
- а) эксперимент, основанный на регистрации входящих и исходящих параметров, характеризующих объект исследования, без вмешательства в опыт в процессе его проведения;
- б) эксперимент, при котором исследователь активно вмешивается в ход эксперимента и может менять его направление и постановку задачи;
- в) эксперимент, который проводится на математической модели;
- г) нет правильного ответа.
- 5. Активный эксперимент это:
- а) эксперимент, основанный на регистрации входящих и исходящих параметров, характеризующих объект исследования, без вмешательства в опыт в процессе его проведения;
- б) эксперимент, при котором исследователь активно вмешивается в ход эксперимента и

может менять его направление и постановку задачи;

- в) эксперимент, который проводится на математической модели;
- г) нет правильного ответа.
- 6. Дисперсия характеризует:
- а) разброс случайной величины вокруг ее математического ожидания;
- б) среднее геометрическое всех значений, которые принимает случайная величина в N опытах;
- в) среднее арифметическое всех значений, которые принимает случайная величина в N опытах;
- г) характеризует тесноту корреляционной связи между случайными величинами, если эта связь описывается линейным полиномом
- 7. Количество опытов при полном факторном эксперименте для двух уровней

определяется формулой:

- a) $N = 2^n$;
- б) N = 2 n;
- B) N = n2;
- Γ) N = en, Γ де n число факторов
- 8. Статистический анализ уравнений регрессии состоит из:
- а) оценки дисперсии воспроизведения (или оценки погрешности опыта)
- б) оценки значимости коэффициентов уравнения регрессии;
- в) оценка адекватности модели;
- г) правильные все ответы вместе.
- 9. Ресурс оптимизации это:
- а. свобода выбора значений входных факторов;
- б. наличие статистической математической модели;
- в. наличие физической модели.
- г. наличие аналоговой модели технологического процесса.
- 10. Для правильной постановки задачи оптимизации необходимо выполнение следующих условий:
- а. оптимизация только одной величины;
- б. наличие степеней свободы управляющих воздействий в объекта, который оптимизируется;
- в. возможность количественной оценки величины, оптимизируется;
- г. правильные все три ответа вместе.
- 11. При оптимизации методом симплекс оптимум объекта ищут:
- а. поочередным варьированием каждого фактора к достижению локального оптимума;
- б. случайным выбором движения на каждом последующем этапе, который ухудшил критерий оптимизации объекта;
- в. движение к оптимуму осуществляется с помощью движения фигуры, количество вершин которой на единицу больше, чем число факторов;
- г. движение к оптимуму осуществляется в направлении наиболее быстрого роста (уменьшение) критерия оптимизации.
- 12. Задачей, которую решает инженер при оптимизации являются:
- а) использование алгоритма оптимального проектирования процесса или оборудования;
- б) использование алгоритма оптимального управления процессом;
- в) построение алгоритма оптимального проектирования процесса или оборудования;
- г) правильные все ответы вместе.
- 13. Объектом оптимизации может быть:
- а) конструкция машины или аппарата;
- б) конструкция отдельных узлов машины или аппарата;
- в) режим проведения технологического процесса;
- г) правильные все ответы.

- 14. В градиентных методов поиска относятся:
- а) метод наискорейшего спуска;
- б) метод Гаусса-Зейделя;
- в) метод симплексов;
- г) метод случайного поиска.
- 15. К безградиентным методам поиска относятся:
- а) метод симплексов;
- б) метод наискорейшего спуска;
- в) метод крутого восхождения;
- г) метод градиента.

3.4 ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ЭКЗАМЕНА

- 1. Методы исследования и анализа процессов пищевых производств.
- 2. Физическое моделирование. Преимущества и недостатки.
- 3. Виды подобия.
- 4. Первая теорема подобия.
- 5. Вторая теорема подобия.
- 6. Третья теорема подобия.
- 7. Характеристика и классификация моделей.
- 8. Аналоговое моделирование.
- 9. Невозможность использования метода физического моделирования для процессов с химической реакцией.
- 10. Цели и методы исследования процессов пищевых производств.
- 11. Комбинирование методов физического и математического моделирования.
- 12. Пищевое производство сложная, многоуровневая система
- 13. Математическое моделирование. Преимущества и недостатки.
- 14. Первая стадия математического моделирования.
- 15. Первый этап построения математической модели.
- 16. Второй этап построения математической модели.
- 17. Третий этап построения математической модели.
- 18. Задачи, решаемые в ходе математического моделирования. 19. Математическая модель с сосредоточенными параметрами.
- 20. Математическая модель с распределенными параметрами.
- 21. Идеальные гидродинамические модели.
- 22. Реальные гидродинамические модели.
- 23. Требования к гидродинамическим моделям.
- 24.Определение структуры потока с помощью стандартных входных сигналов.
- 25. Модель идеального перемешивания.
- 26. Модель идеального вытеснения.
- 27. Диффузионная модель.
- 28. Ячеечная модель.
- 29. Комбинированные модели гидродинамических потоков. Принципы их построения.

- 30. Схема модели идеального перемешивания с застойной зоной.
- 31.Схема модели с последовательными зонами идеального перемешивания и илеального вытеснения.
- 32.Схема модели с зоной идеального перемешивания и байпасом.
- 33. Задачи, которые необходимо решить при построении математической модели.
- 34.Основные направления построения математических моделей.
- 35.Построение математических моделей на базе фундаментальных законов.
- 36.Преимущества и недостатки математических моделей на базе фундаментальных законов.
- 37. Конструктивные параметры, которые входят в математическую модель.
- 38. Физические параметры, которые входят в математическую модель.
- 39. Параметры элементарных процессов, входящих в математическую модель.
- 40. Блок-схема состава математической модели.
- 41. Классификация математических моделей по характеру режимов процесса.
- 42. Классификация математических моделей по изменению параметров в пространстве и времени.
- 43. Типовая схема построения детерминированной математической модели.
- 44. Математическое моделирование процессов измельчения.
- 45. Требования к моделям структуры потока.
- 46. Кривые отклика на стандартные возмущения, F- и C-кривые.
- 47. Требования к индикаторам, которые используются для определения структуры потока.
- 48. Корреляционный анализ.
- 49. Построение статистических моделей.
- 50.Пассивный эксперимент.
- 51. Активный эксперимент
- 52.Преимущества и недостатки статистических моделей.
- 53. Проверка адекватности математической модели.
- 54.Оценка значимости коэффициентов статистической математической модели.
- 55.Полный факторный эксперимент.
- 56. Масштабирование факторов.
- 57. Статистические модели на основе пассивного эксперимента.
- 58. Статистические модели на основе активного эксперимента.
- 59. Математическое ожидание, дисперсия, среднеквадратическое отклонение.
- 60.Статистические модели. Входные и выходные параметры.
- 61. Проверка значимости коэффициентов уравнения регрессии.
- 62. Основные условия постановки задачи оптимизации
- 63. статическая и динамическая задачи оптимизации.
- 64. Особенности оптимизации при использовании статистических моделей.
- 65. Метод гаусса-Зейделя.
- 66. Метод случайного поиска.
- 67. Метод симплекса.
- 68. Метод крутого восхождения.
- 69. Метод градиента.

- 70. Применение значимости коэффициентов при многокритериальной оптимизации.
- 71. Графический метод многокритериальной оптимизации.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ

Изучение дисциплины студентами осуществляется на лекциях и практических занятиях, а также в процессе их самостоятельной работы. Перечень оценочных средств по дисциплине:

- банк вопросов (для опроса и тестирования);
- контрольная работа (для з.ф.о.);
- программа зачета.

Контроль выполнения практических работ проводится в виде проверки оформления

отчетов и их защиты.

Форма промежуточной аттестации по дисциплине:

- Текущий модульный контроль (тестирование, устный опрос по темам, защита практических работ, контрольная работа);
- зачет.

Для оценки знаний обучающихся используют **тестовые задания** в закрытой форме

(когда испытуемому предлагается выбрать правильный ответ из нескольких возможных),

открытой форме (ввод слова или словосочетания с клавиатуры), выбор соответствия (выбор

правильных описаний к конкретным терминам), а также множественный выбор (выбор

нескольких возможных вариантов ответа). Результат зависит от общего количества

правильных ответов. Тестирование проводится в системе Moodle, оценивание автоматизировано.

Проверка письменно оформленных в тетрадях для **лабораторных работ** отчетов о проведенных исследованиях осуществляется в аудиторной форме. Во время

проверки и оценки отчетов проводится анализ результатов выполнения, выявляются

типичные ошибки, а также причины их появления. Анализ оформленных отчетов проводится

оперативно. При проверке отчетов преподаватель исправляет каждую допущенную ошибку и

определяет полноту ответа, учитывая при этом четкость и последовательность изложения

мыслей, наличие и достаточность пояснений, знания терминологии в предметной области.

Оформленная работа оценивается в соответствии с баллом, выделенным на конкретную

работу (согласно рабочей программе курса).

Контрольная работа по учебной дисциплине выполняется во внеаудиторной форме

по итогам изучения теоретического материала курса.

Внеаудиторная контрольная работа предполагает решение задач в соответствие с вариантом, их оформление и защиту. Критериями оценки такой работы становятся:

соответствие содержания ответа вопросу, понимание базовых категорий темы, использование в ответе этих категорий, грамотность, последовательность изложения.

Устный опрос позволяет оценить знания и кругозор обучающегося, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Опрос как важнейшее средство развития мышления и речи обладает большими возможностями воспитательного воздействия преподавателя. Обучающая функция состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к экзамену.

Подготовка **устного доклада** предполагает выбор темы сообщения в соответствии с календарно-тематическим планом. Выбор осуществляется с опорой на список литературы, предлагаемый по данной теме.

При подготовке доклада необходимо вдумчиво прочитать работы, после прочтения следует продумать содержание и кратко его записать. Дословно следует выписывать лишь конкретные определения, можно включать в запись примеры для иллюстрации. Проблемные вопросы следует вынести на групповое обсуждение в процессе выступления.

Желательно, чтобы в докладе присутствовал не только пересказ основных идей и фактов, но и имело место выражение обучающимся собственного отношения к излагаемому материалу, подкрепленного определенными аргументами (личным опытом, мнением других исследователей).

Критериями оценки устного доклада являются: полнота представленной информации, логичность выступления, наличие необходимых разъяснений и использование иллюстративного материала по ходу выступления, привлечение материалов современных научных публикаций, умение ответить на вопросы слушателей, соответствие доклада заранее оговоренному временному регламенту.

Зачет проводится по дисциплине в соответствии с утвержденным учебным планом (6 семестр изучения). Для проведения зачеталектором курса ежегодно

разрабатываются (обновляются) вопросы, которые утверждаются на заседании кафедры.

5. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Текущее тестирование и самостоятельная работа, балл								Итого	Итоговый	C	
Смысловой модуль № 1		Смысло	овой мод №2	ой модуль 22		Смысловой модуль №3		текущий контроль в баллах	контроль (экзамен)	Сумма в баллах	
T1	T2	T3	T4	T5	T6	T7	Т8	T9			
4	3	3	5	5	5	7	8	9	40	60	100
10			15			15		40	00	100	

Т1-Т3 – темы смыслового модуля 1

Т4-Т6 – темы смыслового модуля 2

Т7-Т9 – темы смыслового модуля 3

Соответствие государственной шкалы оценивания академической успеваемости

академической успеваемости								
Сумма баллов за	По государственной	Определение						
все виды учебной	шкале							
деятельности								
90-100	«Отлично» (5)	отлично – отличное выполнение с незначительным количеством неточностей						
75-89	«Хорошо» (4)	хорошо — в целом правильно выполненная работа с незначительным количеством ошибок (до 10 -15%)						
60-74	«Удовлетворительно» (3)	удовлетворительно — неплохие, знания материала, но со значительным количеством недостатков, что удовлетворяет минимальным критериям						
0-59	«Неудовлетворительно» (2)	неудовлетворительно — плохие результаты по изученному материалу, недостаточные для удовлетворительной оценки и требуют дополнительного изучения материала и повторной аттестации						