Документ подписан простой электронной подписью Информация о владельце:
ФИО: Крылова Людмила Вячеславовна
Должность: Проректор по учебно-методической работе
Дата подписания: 27.10.2025 14:28:33
Уникальный программный ключ:
b066544bae1e449cd8bfce392f7224a676a271b2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ТЕХНОЛОГИИ И ОРГАНИЗАЦИИ ПРОИЗВОДСТВА ПИЩЕВЫХ ПРОДУКТОВ ИМЕНИ А.Ф. КОРШУНОВОЙ

УТВЕРЖДАЮ

Проректор по учебно методической работе

Л.В. Крылова

« 26 »

2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.02.02. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ТЕХНОЛОГИИ ОТРАСЛИ

Укрупненная группа направления подготовки <u>19.00.00</u> Промышленная экология и биотехнология

Программа высшего образования: программа бакалавриата

Направление подготовки 19.03.03 Продукты питания животного происхождения

Профиль: Технология мяса и мясных продуктов

Факультет ресторанно-гостиничного бизнеса

Курс, форма обучения:

очная форма обучения 3 курс

заочная форма обучения 5 курс

Рабочая программа адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

> Донецк 2025

Рабочая программа учебной дисциплины «Математические модели в технологии отрасли» для обучающихся по направлению подготовки <u>19.03.03</u> Продукты питания животного происхождения

разработанная в соответствии с учебным планом, утвержденным Ученым советом Университета:

- в 2025 г. для очной формы обучения;
- в 2025 г. для заочной формы обучения;

Разработчик: Корнийчук Владимир Григорьевич, доцент, канд. техн. наук.

Рабочая программа утверждена на заседании кафедры <u>технологии и</u> организации производства продуктов питания имени Коршуновой А.Ф.

Протокол от <u>" 03 "февраля 2025 года № 19</u> Заведующий кафедрой ТОППП имени А.Ф. Коршуновой

СОГЛАСОВАНО:

Декан факультета ресторанно-гостиничного бизнеса

« 03» 02

И.В. Кощавка 2025 г.

Одобрено Учебно - методическим советом Университета

Протокол от "_26 » февраля 2025 года № 7

Председатель туп Л.В. Крылова

© Корнийчук В.Г., 2025 г ©ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», 2025г.

1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование показателя	Наименование укрупненной группы, направлений		стика учебной иплины		
	подготовки (профиль, магистерская программа), специальности, программа высшего образования	очная форма обучения	заочная / очно- заочная форма обучения		
Количество зачетных единиц – 3	19.00.00 "Промышленная экология и биотехнологии" Направление подготовки 19.03.03 Продукты питания животного происхождения		уемая участниками ьных отношений .В.ДВ.02.02		
Модулей - 1	Профиль:	Год подготовк	и:		
Смысловых модулей - 4	<u>Технология мучных и</u>	3-й	4-й		
Индивидуальные научно- исследовательские задания:	кондитерских изделий	Ce	еместр		
Общее количество часов –		6-й	Зимняя сессия		
108		Л	екции		
Количество часов в	Программа высшего	32час.	6 час.		
неделю для очной формы обучения:	образования	Практические, семинарские занятия			
аудиторных – 4,3	Программа бакалавриата	час.	час.		
самостоятельной работы		Лабораторные работы			
студента – 1,56		46 час.	6 час.		
		Самостоят	ельная работа		
		28,15час.	92,85		
		Индивидуа.	тьные задания:		
		Контрол	ьная работа		
		Форма промежуточной аттестации:			
		Зачет	Зачет		

Соотношение количества часов аудиторных занятий и самостоятельной работы составляет:

для очной формы обучения -78/28,15 для заочной формы обучения -12/92,85

2. ЦЕЛЬ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: Приобретение обучающимися знаний по моделированию и оптимизации технологических процессов производства пищевых продуктов.

Задачи учебной дисциплины: Изучение основных методов моделирования и оптимизации, приобретение навыков использования моделей при создании и модификации процессов и аппаратов пищевых производств.

3. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина Б1.В.ДВ.02.02 «Математические модели в технологии отрасли» относится к профессиональному циклу части формируемой участниками образовательных отношений ОПОП ВО. Изложение курса основывается на знаниях, полученных при изучении следующих дисциплин: «Высшая математика», «Физика», «Процессы и аппараты пищевых производств», «Физико-химические основы и основные принципы переработки сырья животного происхождения».

Необходимыми условиями для освоения дисциплины «Оптимизация технологических процессов» являются: изучение методов моделирования и оптимизации технологических процессов для решения научно-исследовательских и производственных задач, а также методов исследования свойств сырья животного происхождения.

Дисциплина «Оптимизация технологических процессов» является предшествующей для таких дисциплин, как: технология отрасли, пищевые технологии, а также обеспечивает реализацию практики и подготовку научно-исследовательской работы для программы высшего профессионального образования «бакалавриат».

4. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения изучения учебной дисциплины у обучающегося должны быть сформированы компетенции и индикаторы их достижения:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
ПК-9. Организует информационное	ИДК-1 _{ПК-9} Собирает и систематизирует информацию о
сопровождение процесса создания	направлениях развития науки, техники и технологий,
результатов интеллектуальной	определяет и анализирует актуальные направления
деятельности и средств	ИДК- $2_{\Pi K-9}$ Составляет отчеты для информирования
индивидуализации	разработчиков научно-исследовательских, опытно-
	конструкторских и технологических работ об уровне
	научно-технического развития по соответствующим
	направлениям, о существующих объектах
	интеллектуальной собственности
	ИДК-3 _{ПК-9} Консультирует по способам и механизмам
	трансфера результатов интеллектуальной деятельности,
	правовым и экономическим последствиям трансфера

В результате изучения дисциплины «Оптимизация технологических процессов», обучающийся должен:

знать:

- основные методы моделирования и оптимизации процессов и аппаратов производства пищевых продуктов.

уметь:

- применять навыки моделирования и оптимизации процессов и аппаратов производства пищевых продуктов при проведении научно-исследовательской работы.

владеть: методами моделирования и оптимизации процессов производства пищевых продуктов.

5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Смысловой модуль 1. Методы моделирования технологических процессов

- Тема1. Методы исследования и анализа процессов и оборудования пищевых производств.
- Тема 2. Физическое моделирование.
- Тема 3. Математическое моделирование.

Смысловой модуль 2.Статическая оптимизация

- Тема 4. Постановка задачи оптимизации.
- Тема 5. Оптимизация функции одной переменной.
- Тема 6. Численные методы минимизации функции одной переменной.

Смысловой модуль 3. Оптимизация функции нескольких переменных

- Тема 7. Оптимизация функции нескольких переменных.
- Тема 8. Численные методы минимизации функции нескольких переменных.
- Тема 9. Линейное программирование.

6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

Названия смысловых модулей и тем		Количество часов										
	очная форма обучения			заочная форма обучения								
	всего		Ι	з том	числ	e	всего		В	том	и числ	те
		π^1	Π^2	лаб³	инд ⁴	CPC ⁵		Л	П	лаб	инд	CPC
1	2	3	4	5	6	7	8	9	10	11	12	13
Смысловой модуль 1. Методы модел	ирова	ния	I Te	ехној	югич	еских	проце	eco	сов			
Тема1. Методы исследования и анализа процессов и оборудования пищевых производств.	12	4		5		3	12	1		1		10
Тема 2. Физическое моделирование	12	4		5		3	12	1		1		10
Тема 3. Математическое моделирование.	13	4		6		3	12	1		1		10
Вместе по смысловому модулю 1	39	12		16		9	36	3		3		30
Смысловой модуль 2.Статическая оп	тимиз	зац	ия									
Тема 4. Постановка задачи оптимизации.	11	3		5		3	19					10
Тема 5. Оптимизация функции одной переменной.	11	3		5		3	12	1		1		10
Тема 6. Численные методы минимизации функции одной переменной.	11	3		5		3	10					10
Вместе по смысловому модулю 2	33	9		15		9	32	1		1		30
Смысловой модуль 3. Оптимизация	функц	ии	не	скол	ьких	перем	енны	X				

Тема 7. Оптимизация функции нескольких переменных.	11	3	5		3	12	1	1		10
Тема 8. Численные методы минимизации функции нескольких переменных.	12	4	5		3	10				10
Тема 9. Линейное программирование.	13,15	4	5		4,15	14,85	1	1		12,85
Вместе по смысловому модулю 3	36,15	11	15		10,15	36,85	2	2		32,85
Катт	1,6			1,6		0,9			0,9	
СР										
СРэк										
кэ										
Катэк	0,25			0,25		0,25			0,25	
Контроль						2			2	
Всего часов	108	32	46	1,85	28,15	108	6	6	3,15	92,85

- Примечания: 1. л лекции;
 2. п практические (семинарские) занятия;
 3. лаб лабораторные занятия;
 4. инд индивидуальные задания;

- 5. СРС самостоятельная работа;6. ИНИР индивидуальная научно-исследовательская работа.

7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

			чество сов
№ п/п	Название темы	очная форма	заочная/ очно- заочная форма
	Учебным планом не предусмотрено		

8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Nº		Количе	ество часов
п/п	Название темы	очная форма	Заочная форма
1	Оценки характеристик объектов исследования.	6	1
2	Априорное ранжирование	6	1
	Составление статистической математической модели на основе активного эксперимента.	6	1
	Составление статистической математической модели на основе пассивного эксперимента.	5	1
5	Метод половинного деления	5	
6	Метод Гаусса-Зейделя	5	1
7	Метод наискорейшего спуска.	5	
8	Симплекс метод.	5	
	Оптимизация с использованием многокритериальной целевой функции	5	1
	Всего:	46	6

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

№		Колич	ество часов
л/п	Название темы	очная форма	заочная форма
	ысловой модуль 1. Методы моделирования технологических цессов		
1	Тема1. Методы исследования и анализа процессов и оборудования пищевых производств.	3	10
2	Тема 2. Физическое моделирование.	3	10
3	Тема 3. Математическое моделирование.	3	10
Смі	ысловой модуль 2.Статическая оптимизация		
4	Тема 4. Постановка задачи оптимизации.	3	10
5	Тема 5. Оптимизация функции одной переменной.	3	10
6	Тема 6. Численные методы минимизации функции одной переменной.	3	10
	ысловой модуль 3. Оптимизация функции нескольких еменных		
,	Тема 7. Оптимизация функции нескольких переменных.	3	10
	Тема 8. Численные методы минимизации функции нескольких переменных.	3	10
	Тема 9. Линейное программирование.	4,15	12,85
Bce	го:	28,15	92,85

10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации учебной дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- 1) для слабовидящих:
- лекции оформляются в виде электронного документа;
- письменные задания оформляются увеличенным шрифтом или заменяются устным ответом;
- 2) для слабослышащих:
- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- экзамен проводится в письменной форме на компьютере; возможно проведение в форме тестирования с использованием дистанционной системы Moodle;
- 3) для лиц с нарушениями опорно-двигательного аппарата:
- лекции оформляются в виде электронного документа;
- письменные задания заменяются устным ответом;
- экзамен проводится в устной форме.

При необходимости предусматривается увеличение времени для подготовки ответа. Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов. При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для слабовидящих:
- в печатной форме увеличенным шрифтом;
- в форме электронного документа.
- 2) для слабослышащих:
- в печатной форме;
- в форме электронного документа.
- 3) для обучающихся с нарушениями опорно-двигательного аппарата:
- в печатной форме;
- в форме электронного документа

11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Темы рефератов:

- 1. Математическое моделирование процессов абсорбции.
- 2. Математическое моделирование процесса сушки пищевых продуктов.
- 3. Математическое моделирование процесса измельчения.
- 4. Математическое моделирование процесса смешения.
- 5. Математическое моделирование процессов прессования.

- 6. Математическое моделирование процессов классификации.
- 7. Математическое моделирование процессов абсорбции.
- 8. Математическое моделирование процесса сушки пищевых продуктов.
- 9. Математическое моделирование процесса измельчения.
- 10. Математическое моделирование процесса смешения.
- 11. Методы статической оптимизации.
- 12. Безградиентные методы оптимизации.
- 13. Градиентные методы оптимизации.
- 14. Оптимизация состава сырья.
- 15. Симплекс метод.

12. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

Оценочные средства детализированы по видам работ в оценочных материалах по учебной дисциплине (утверждены на заседании кафедры).

Система оценивания по учебной дисциплине, изучаемой в очной форме обучения

Форма контроля	Максимальное количество баллов			
	за одну работу	всего		
Текущий контроль:				
- выполнение, оформление и защита лабораторных	8	72		
работ №1-9;				
- тестирование (содержательный модуль №1);	8	8		
- тестирование (содержательный модуль №2);	10	10		
- тестирование (содержательный модуль №3);	10	10		
При недоборе баллов студенты могут:				
- подготовить рефераты (доклады, эссе) по выбранной				
теме;				
- тезисы на конференции;				
- участие в олимпиаде, статьи и др.	5-15			
Промежуточная аттестация	Зачет	100		
Итого за семестр	100			

Примечание. 1 - В соответствии с утвержденными оценочными материалами по учебной дисциплине

Система оценивания по учебной дисциплине, изучаемой в заочной форме обучения

система оценивания по учестои дисциплине, и	зучасмой в заочной фо	pme obyactina			
Форма контроля	Максимально	Максимальное количество			
	бала	ПОВ			
	за одну работу	всего			
Текущий контроль:					
- тестирование (содержательный модуль №1);	32	32			
- тестирование (содержательный модуль №2);	34	34			
- тестирование (содержательный модуль №3);	34	34			
При недоборе баллов студенты могут:					

- подготовить рефераты (доклады, эссе) по выбранной			
теме;			
- тезисы на конференции;			
- участие в олимпиаде, статьи и др.	5-15		
Промежуточная аттестация	Зачет	100	
Итого за семестр	100		

Вопросы к контрольной работе:

- 1. Численные методы оптимизации функции нескольких переменных
- 2. Моделирование и виды моделей
- 3. Виды математических моделей
- 4. Этапы разработки математических моделей
- 5. Составление математического описания объекта
- 6. Моделирование механических процессов
- 7. Моделирование тепловых процессов
- 8. Моделирование массообменных процессов
- 9. Моделирование гидромеханических процессов
- 10. Задачи оптимизации технологических процессов пищевых производств
- 11. Методы оптимизации технологических процессов пищевых производств
- 12. Этапы решения задачи оптимизации технологических процессов пищевых производств
- 13. Критерии оптимизации
- 14. Технологические критерии оптимизации
- 15. Экономические критерии оптимизации
- 16. Характеристика методов решения задач оптимизации
- 17. Активный эксперимент
- 18. Пассивный эксперимент
- 19. Физическое моделирование
- 20. Использование математических моделей
- 21. Анализ технологического процесса
- 22. Понятие «системный подход», «системные исследования», «системный анализ»,
- их возможности в научных исследованиях
- 23. Значение эксперимента в моделировании технологических объектов
- 24. Сущность оптимизации
- 25. Многокритериальная оптимизация.
- 26. Методы оптимизации функции одной переменной
- 27. Методы оптимизации функции нескольких переменных
- 28. Условия применения методов интенсификации и оптимизации процессов с учетом специфики технологических операций
- 29. Методы оптимизации не использующие производные
- 30. Методы оптимизации использующие производные

Тестовые задания

Основные методы моделирования.

- 1. Критерий, характеризующий процесс теплообмена между теплоносителем и поверхностью стенки:
- а) Нусельта
- б) пекле
- в) Прандтля
- г) Фурье

- 2. Критерий, характеризующий физические свойства теплоносителя:
- а) Био
- б) Прандтля
- в) пекле
- г) Грасгофа
 - 3. Критерий, характеризующий режим движения пленки конденсата под действием силы тяжести:
- а) Рейнольдса
- б) Галилея
- в) Архимеда
- г) Эйлера
- 4. Критерий, характеризующий процесс фазового превращения при конденсации пара:
- а) Био
- б) Кутателадзе
- в) Грасгофа
- г) Пекле
- 5. Критерий, характеризующий соотношение сил инерции и сил давления в системе:
- а) Эйлера
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 6. Критерий, характеризующий соотношение сил инерции и силы тяжести:
- а) Ньютона
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 7. Критерий, характеризующий соотношение сил инерции и сил вязкого трения:
- а) Эйлера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 8. Какая теорема подобия определяет необходимые и достаточные условия для подобных явлений:
- а) первая
- б) вторая
- в) третья
- г) все
- 9. Если отношение всех подобных размеров сравниваемых аппаратов является величиной постоянной, то это:
- а) сходство физических величин;
- б) временная сходство;
- и) геометрическое подобие;
- г) сходство начальных и граничных условий.
- 10. В расчетах тепловых аппаратов критерий Нусельта определяют для:
- а) определение толщины стенки аппарата;
- б) определение коэффициента теплоотдачи;
- в) определение коэффициента теплопроводности;
- г) определение средней температуры теплоносителя.
- 11. Критерий, характеризующий соотношение сил притяжения и молекулярного трения (вязкости) в потоке:
- а) Рейнольдса
- б) Ньютона

- в) Галилея
- г) Пекле
- 12. Критерий, характеризующий соотношение сил инерции и сил давления в системе:
- а) Эйлера
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 13. Критерий, характеризующий соотношение сил инерции и силы тяжести:
- а) Ньютона
- б) Фруда
- в) Галилея
- г) Рейнольдса
- 14. Критерий, характеризующий взаимодействие архимедова силы, возникающей при разнице плотностей среды и силы вязкого трения:
- а) Эйлера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 15. Критерий, характеризующий отношение сил гидромеханического оздействия на каплю жидкости в силу поверхностного натяжения:
- а) Вебера
- б) Рейнольдса
- в) Фруда
- г) Галилея
- 16. Критерий, характеризующий скорость, которую приобретает тело при колебательном воздействии на него окружающей среды:
- а) Вебера
- б) Рейнольдса
- в) Струхаля
- г) Галилея

Математическое моделирование процессов на базе фундаментальных законов.

- 1. Математическое моделирование это:
- а) совокупность математических зависимостей, которые отражают в явной форме суть технологического процесса;
- б) совокупность программ для ЭВМ;
- в) совокупность алгоритмов расчета процессов и оборудования;
- г) совокупность методик экспериментального определения параметров процесса.
- 2. Математическое моделирование является основой для создания:
- а) система автоматизированного проектирования (САПР)
- б) автоматизированных систем управления технологическими процессами (АСУТП)
- в) автоматизированных систем управления (АСУ);
- г) все ответы правильные.
- 3. В стадий математического моделирования не входит:
- а) доказательство принципиальной возможности производства;
- б) постановка задачи;
- в) построение модели на основе математического описания физико-химических закономерностей;
- г) разработка алгоритмов и программ для ЭВМ.
- 4. Математическое моделирование не позволяет:
- а) с помощью одного устройства (ЭВМ) осуществлять решения целого класса задач;
- б) моделирование по "элементарным" процессам;
- в) сэкономить время и средства по сравнению с методом физического моделирования;

- г) визуально следить за ходом процесса.
- 5. В ходе математического моделирования НЕ решаются следующие задачи:
- а) регистрация наблюдений без преобразующих устройств;
- б) установление связей между параметрами процесса;
- в) реализации математического описания;
- г) проверка адекватности математической модели процесса.
- 6. В "элементарных" процессов технологического процесса относятся:
- а) химические преобразования;
- б) перемещение вещества;
- в) перемещение теплоты и массы;
- г) все ответы правильные.
- 7. Если основные переменные процесса не изменяются в пространстве, а заменяются только во времени, то математические модели называются:
- а) моделями с сосредоточенными параметрами;
- б) моделями с распределенными параметрами;
- в) физическими моделями;
- г) геометрическими моделями.
- 8. Полная математическая модель процесса это:
- а) динамическая модель;
- б) статистическая модель;
- в) модуль с распределенными параметрами;
- г) совокупность статической и математической модели с ограниченными и дополнительными условиями.
- 9. Динамическая модель, как правило описывается:
- а) алгебраическими уравнениями;
- б) дифференциальными уравнениями;
- в) эмпирическими уравнениями;
- г) интегральными уравнениями.
- 10. В основе феноменологического метода описания систем лежит:
- а) интегральное уравнение сохранения и переноса физической субстанции;
- б) уравнение Гиббса, для изменения энтропии многокомпонентных систем;
- в) уравнение Онзагера;
- г) система эмпирических уравнений.

Статистические математические модели процессов.

- 1. Статистические модели используются:
- а) когда объект мало изучен или очень сложный;
- б) когда известна внутренняя структура объекта;
- в) когда достаточно теоретических сведений об объекте;
- г) когда объект хорошо изучен и является математическое описание в виде эмпирических зависимостей.
- 2. Для построения статистических математических моделей динамики процесса, как правило, используют:
- а) уравнение регрессии;
- б) дифференциальные уравнения;
- в) случайные функции;
- г) тепловой и материальный балансы.
- 3. При использовании статистических моделей:
- а) получаем связь исходной величины с входными факторами без раскрытия внутренней структуры объекта;
- б) получаем связь исходной величины с входными факторами с раскрытием внутренней структуры объекта;

- в) раскрываем внутреннюю структуру объекта без установления связи исходной величины с входными факторами;
- г) нет правильного ответа.
- 4. Пассивный эксперимент это:
- а) эксперимент, основанный на регистрации входящих и исходящих параметров, характеризующих объект исследования, без вмешательства в опыт в процессе его проведения;
- б) эксперимент, при котором исследователь активно вмешивается в ход эксперимента и может менять его направление и постановку задачи;
- в) эксперимент, который проводится на математической модели;
- г) нет правильного ответа.
- 5. Активный эксперимент это:
- а) эксперимент, основанный на регистрации входящих и исходящих параметров, характеризующих объект исследования, без вмешательства в опыт в процессе его проведения;
- б) эксперимент, при котором исследователь активно вмешивается в ход эксперимента и может менять его направление и постановку задачи;
- в) эксперимент, который проводится на математической модели;
- г) нет правильного ответа.
- 6. Дисперсия характеризует:
- а) разброс случайной величины вокруг ее математического ожидания;
- б) среднее геометрическое всех значений, которые принимает случайная величина в N опытах;
- в) среднее арифметическое всех значений, которые принимает случайная величина в N опытах;
- г) характеризует тесноту корреляционной связи между случайными величинами, если эта связь описывается линейным полиномом
- 7. Количество опытов при полном факторном эксперименте для двух уровней определяется формулой:
- a) $N = 2^n$:
- б) N = 2 n:
- B) N = n2;
- Γ) N = en, где n число факторов
- 8. Статистический анализ уравнений регрессии состоит из:
- а) оценки дисперсии воспроизведения (или оценки погрешности опыта)
- б) оценки значимости коэффициентов уравнения регрессии;
- в) оценка адекватности модели;
- г) правильные все ответы вместе.
- 9. Ресурс оптимизации это:
- а. свобода выбора значений входных факторов;
- б. наличие статистической математической модели;
- в. наличие физической модели.
- г. наличие аналоговой модели технологического процесса.
- 10. Для правильной постановки задачи оптимизации необходимо выполнение следующих условий:
- а. оптимизация только одной величины;
- б. наличие степеней свободы управляющих воздействий в объекта, который оптимизируется;
- в. возможность количественной оценки величины, оптимизируется;
- г. правильные все три ответа вместе.
- 11. При оптимизации методом симплекс оптимум объекта ищут:

- а. поочередным варьированием каждого фактора к достижению локального оптимума;
- б. случайным выбором движения на каждом последующем этапе, который ухудшил критерий оптимизации объекта;
- в. движение к оптимуму осуществляется с помощью движения фигуры, количество вершин которой на единицу больше, чем число факторов;
- г. движение к оптимуму осуществляется в направлении наиболее быстрого роста (уменьшение) критерия оптимизации.
- 12. Задачей, которую решает инженер при оптимизации являются:
- а) использование алгоритма оптимального проектирования процесса или оборудования;
- б) использование алгоритма оптимального управления процессом;
- в) построение алгоритма оптимального проектирования процесса или оборудования;
- г) правильные все ответы вместе.
- 13. Объектом оптимизации может быть:
- а) конструкция машины или аппарата;
- б) конструкция отдельных узлов машины или аппарата;
- в) режим проведения технологического процесса;
- г) правильные все ответы.
- 14. В градиентных методов поиска относятся:
- а) метод наискорейшего спуска;
- б) метод Гаусса-Зейделя;
- в) метод симплексов;
- г) метод случайного поиска.
- 15. К безградиентным методам поиска относятся:
- а) метод симплексов;
- б) метод наискорейшего спуска;
- в) метод крутого восхождения;
- г) метод градиента.

Вопросы для проведения экзамена:

- 1. Методы исследования и анализа процессов пищевых производств.
- 2. Физическое моделирование. Преимущества и недостатки.
- 3. Виды подобия.
- 4. Первая теорема подобия.
- 5. Вторая теорема подобия.
- 6. Третья теорема подобия.
- 7. Характеристика и классификация моделей.
- 8. Аналоговое моделирование.
- 9. Невозможность использования метода физического моделирования для процессов с химической реакцией.
- 10. Цели и методы исследования процессов пищевых производств.
- 11. Комбинирование методов физического и математического моделирования.
- 12. Пищевое производство сложная, многоуровневая система
- 13. Математическое моделирование. Преимущества и недостатки.
- 14. Первая стадия математического моделирования.
- 15. Первый этап построения математической модели.
- 16. Второй этап построения математической модели.
- 17. Третий этап построения математической модели.
- 18. Задачи, решаемые в ходе математического моделирования.
- 19. Математическая модель с сосредоточенными параметрами.
- 20. Математическая модель с распределенными параметрами.
- 21. Идеальные гидродинамические модели.

- 22. Реальные гидродинамические модели.
- 23. Требования к гидродинамическим моделям.
- 24.Определение структуры потока с помощью стандартных входных сигналов.
- 25. Модель идеального перемешивания.
- 26. Модель идеального вытеснения.
- 27. Диффузионная модель.
- 28. Ячеечная модель.
- 29. Комбинированные модели гидродинамических потоков. Принципы их построения.
- 30. Схема модели идеального перемешивания с застойной зоной.
- 31.Схема модели с последовательными зонами идеального перемешивания и идеального вытеснения.
- 32.Схема модели с зоной идеального перемешивания и байпасом.
- 33. Задачи, которые необходимо решить при построении математической модели.
- 34.Основные направления построения математических моделей.
- 35.Построение математических моделей на базе фундаментальных законов.
- 36.Преимущества и недостатки математических моделей на базе фундаментальных законов.
- 37. Конструктивные параметры, которые входят в математическую модель.
- 38. Физические параметры, которые входят в математическую модель.
- 39. Параметры элементарных процессов, входящих в математическую модель.
- 40. Блок-схема состава математической модели.
- 41. Классификация математических моделей по характеру режимов процесса.
- 42. Классификация математических моделей по изменению параметров в пространстве и времени.
- 43. Типовая схема построения детерминированной математической модели.
- 44. Математическое моделирование процессов измельчения.
- 45. Требования к моделям структуры потока.
- 46. Кривые отклика на стандартные возмущения, F- и С-кривые.
- 47. Требования к индикаторам, которые используются для определения структуры потока.
- 48. Корреляционный анализ.
- 49. Построение статистических моделей.
- 50. Пассивный эксперимент.
- 51. Активный эксперимент
- 52. Преимущества и недостатки статистических моделей.
- 53. Проверка адекватности математической модели.
- 54. Оценка значимости коэффициентов статистической математической модели.
- 55.Полный факторный эксперимент.
- 56. Масштабирование факторов.
- 57. Статистические модели на основе пассивного эксперимента.
- 58. Статистические модели на основе активного эксперимента.
- 59. Математическое ожидание, дисперсия, среднеквадратическое отклонение.
- 60. Статистические модели. Входные и выходные параметры.
- 61.Проверка значимости коэффициентов уравнения регрессии.
- 62. Основные условия постановки задачи оптимизации
- 63. статическая и динамическая задачи оптимизации.
- 64. Особенности оптимизации при использовании статистических моделей.
- 65. Метод гаусса-Зейделя.
- 66. Метод случайного поиска.
- 67. Метод симплекса.
- 68. Метод крутого восхождения.
- 69. Метод градиента.
- 70. Применение значимости коэффициентов при многокритериальной оптимизации.
- 71. Графический метод многокритериальной оптимизации.

13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Текущее тестирование и самостоятельная работа, балл											
Смі	Смысловой		Смысловой модуль Смысловой		Смысловой модуль			Сумма в баллах			
МОД	уль №	1	№ 2			модуль №3		модуль №3			
T1	T2	T3	T4	T5	T6	T7	T8	T9			
4	3	3	5	5	5	7	8	9	100		
	30			35			35		100		

T1-T3 — темы смыслового модуля 1 T4-T6 — темы смыслового модуля 2

Т7-Т9 – темы смыслового модуля 3

Соответствие государственной шкалы оценивания академической успеваемости

успеваемости							
Сумма баллов за	По государственной	Определение					
все виды учебной	шкале						
деятельности							
90-100	«Отлично» (5)	отлично – отличное					
		выполнение с					
		незначительным					
		количеством неточностей					
75-89	«Хорошо» (4)	хорошо – в целом					
		правильно выполненная					
		работа с незначительным					
		количеством ошибок (до					
		10 -15%)					
60-74	«Удовлетворительно»	удовлетворительно –					
	(3)	неплохие, знания					
		материала, но со					
		значительным					
		количеством недостатков,					
		что удовлетворяет					
		минимальным критериям					
0-59	«Неудовлетворительно»	неудовлетворительно –					
	(2)	плохие результаты по					
		изученному материалу,					
		недостаточные для					
		удовлетворительной					
		оценки и требуют					
		дополнительного изучения					
		материала и повторной					
		аттестации					

14. РЕКОМЕНДОВАННАЯ ЛИТЕРАТУРА

Основная

- 1. Волченко В.И. Оптимизация технологических процессов: учебное пособие для обучающихся по направлениям подготовки 19.03.03 "продукты питания животного происхождения", 19.03.04 "технология производства и организация общественного питания", 19.03.01 "биотехнология"/ В.И. Волченко, И.Э. Бражная; -Мурманск; Издательство МГТУ-2020.- 80 с.
- 2. Дерканосов Н.М. Моделирование и оптимизация технологических процессов пищевых производств/ Н.М. Дерканосов, А.А. Журавлев, И.А. Сорокина. Воронеж: ВГТА, 2011.-195 с.
- 3.Алексеев Г.В. Применение математических методов в пищевой инженерии [Электронный ресурс]: учебное пособие/ Алексеев Г.В.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2019.— 125 с.— Режим доступа: http://www.iprbookshop.ru/79664.html.— ЭБС «IPRbooks»

Дополнительная

- 1.Полякова Н.С. Математическое моделирование и планирование эксперимента [Электронный ресурс]: методические указания к выполнению домашнего задания/ Полякова Н.С., Дерябина Г.С., Федорчук Х.Р.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2010.— 36 с.— Режим доступа: http://www.iprbookshop.ru/31051.html.— ЭБС «IPRbooks»
- 2.Мезенова О.Я. Проектирование поликомпонентных пищевых продуктов [Электронный ресурс]: учебное пособие/ Мезенова О.Я.— Электрон. текстовые данные.— СПб.: Проспект Науки, 2015.— 224 с.— Режим доступа: http://www.iprbookshop.ru/35875.html.— ЭБС «IPRbooks»
- 3.Белов П.С. Математическое моделирование технологических процессов [Электронный ресурс]: учебное пособие (конспект лекций)/ Белов П.С.— Электрон. текстовые данные.— Егорьевск: Егорьевский технологический институт (филиал) Московского государственного технологического университета «СТАНКИН», 2016.— 121 с.— Режим доступа: http://www.iprbookshop.ru/43395.html.— ЭБС «IPRbooks»
- 4.Клинов А.В. Математическое моделирование химико-технологических процессов [Электронный ресурс]: учебное пособие/ Клинов А.В., Мухаметзянова А.Г.— Электрон. текстовые данные.— Казань: Казанский национальный исследовательский технологический университет, 2009.— 144 с.— Режим доступа: http://www.iprbookshop.ru/62483.html.— ЭБС «IPRbooks»
- 5.Введение в математическое моделирование [Электронный ресурс]: учебно-методическое пособие/ Б.А. Вороненко [и др.].— Электрон. текстовые данные.— СПб.: Университет ИТМО, Институт холода и биотехнологий, 2014.— 45 с.— Режим доступа: http://www.iprbookshop.ru/65810.html.— ЭБС «IPRbooks»
- 6.Семенов М.Е. Математическое моделирование физических процессов [Электронный ресурс]: учебное пособие/ Семенов М.Е., Некрасова Н.Н.— Электрон. текстовые данные.— Воронеж: Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2016.— 94 с.— Режим доступа: http://www.iprbookshop.ru/72919.html.— ЭБС «IPRbooks»
- 7. Математическое моделирование и дифференциальные уравнения [Электронный ресурс]: учебное пособие для магистрантов всех направлений подготовки/ М.Е. Семенов [и др.].— Электрон. текстовые данные.— Воронеж: Воронежский государственный архитектурностроительный университет, ЭБС АСВ, 2017.— 149 с.— Режим доступа: http://www.iprbookshop.ru/72918.html.— ЭБС «IPRbooks»

8. Ахмадиев Ф.Г. Математическое моделирование и методы оптимизации [Электронный ресурс]: учебное пособие/ Ахмадиев Ф.Г., Гильфанов Р.М.— Электрон. текстовые данные.— Казань: Казанский государственный архитектурно-строительный университет, ЭБС АСВ, 2017.— 179 с.— Режим доступа: http://www.iprbookshop.ru/73309.html.— ЭБС «IPRbooks» 9. Губарь Ю.В. Введение в математическое моделирование [Электронный ресурс]/ Губарь Ю.В.— Электрон. текстовые данные.— М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016.— 178 с.— Режим доступа: http://www.iprbookshop.ru/73662.html.— ЭБС «IPRbooks» 10. Смирнов Г.В. Моделирование и оптимизация объектов и процессов [Электронный ресурс]: учебное пособие/ Смирнов Г.В.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2016.— 216 с.—

Электронные ресурсы

- 1. Автоматизированная библиотечная информационная система UNILIB [Электронный ресурс] Версия 1.100. Электрон. дан. [Донецк, 1999-]. Локал. сеть Науч. б-ки ГО ВПО Донец. нац. ун-та экономики и торговли им. М. Туган-Барановского. Систем. требования: ПК с процессором; Windows; транспорт. протоколы TCP/IP и IPX/SPX в ред. Microsoft; мышь. Загл. с экрана.
- 2. http://www.iprbookshop.ru.IPRbooks: Электронно-библиотечная система [Электронный ресурс] :
- 3. https://elibrary.ru. Elibrary.ru [Электронный ресурс]: науч. электрон. б-ка.
- 4. http://cyberleninka.ru.Научная электронная библиотека «КиберЛенинка

Режим доступа: http://www.iprbookshop.ru/72047.html.— ЭБС «IPRbooks»

5. https://polpred.com. «Полпред Справочники»

15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

- 1. http://cyberleninka.ru. Официальный сайт Научная электронная библиотека «КиберЛенинка» [Электронный ресурс].
- 2. http://e.lanbook.com/books/element.php?pl1_id=70934 Официальный сайт Брусенцев А.А.Общие принципы переработки сырья и введение в технологию продуктов питания М.: НИУ ИТМО, 2013 г [Электронный ресурс].
- 3. http://e.lanbook.com/books/element.php?pl1_id=50677 Официальный сайт Бегунов А.А. Метрология. Аналитические измерения в пищевой и перерабатывающей промышленности [Электронный ресурс]
- 4. https://elibrary.ru. Официальный сайт Науч. электрон. б-ка. Электрон. текстовые. и табл. дан. [Москва]: ООО Науч. электрон. б-ка., 2000 [Электронный ресурс].

16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используется: мультимедийные средства (проекторы, ноутбуки); компьютерные рабочие места; наборы слайдов. Лаборатория физиологии питания аудитория 3305, информационный стенд, аналитические весы, мультимедийное оборудование, спектрофотометр СФ-46.

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Реализация рабочей программы по дисциплине «Физико-химические основы и общие принципы переработки растительного сырья» для обучающихся направления подготовки 19.03.02 Продукты питания из растительного сырья осуществляется доцентом кафедры оборудования пищевых производств кандидатом технических наук Корнийчук В.Г.

Фамилия, имя,	Условия	Должность,	Уровень	Сведения о дополнительном профессио-
отчество	привлечения	ученая	образования,	нальном образовании*
	(по основному	степень,	наименование	
	месту работы,	ученое звание	специальности,	
	на условиях	J	направления	
	внутреннего/		подготовки,	
	внешнего		наименование	
	совмести-		присвоенной	
	тельства;		квалификации	
	на условиях		1	
	договора			
	гражданско-			
	правового			
	характера			
	(далее –			
	договор ГПХ)			
Корнийчук	На условиях	Должность -	Высшее,	1. Удостоверение о повышении
Владимир	внутреннего	доцент, кандидат	Специальность	квалификации №771802830003,
Григорьевич	совместительст	технических	Основные процессы	27.05.2022., «Работа в электронной
	ва	наук, ученое	химических	информационно-образовательной среде»,
		звание – доцент	производств и	16 часов, Федеральное государственное
			химическая	рюджетное образовательное учреждение
			кибернетика,	высшего образования «Российский
			Квалификация	*
			инженер химик-	экномический университет имени
			технолог,	Г.В.Плеханова»,
			диплом кандидата	г. Москва.
			наук ТН № 108959	2. Удостоверение ПК № 612400025402,
			по специальности 05.17.08 –	10.09.2022, «Актуальные вопросы
			Процессы и	преподавания в образовательных
			аппараты	учреждениях высшего образования:
			химических	нормативно-правовое, психолого-
			технологий	
			Доцент-	педагогическое и методическое
			аттестат 12ДЦ №	сопровождение», 24 часа, ФГБОУ ВО
			029232 от	'Донской государственный технический
			23.12.2011г	университет",
				г. Ростов-на-Дону
				3. Удостоверение ПК
				183103168757 «Разработка и внедрение
				ХАССП на предприятиях производящих
				пищевую продукцию», 48 часов, ФГБОУ
				ВО «Удмуртский государственный
				аграрный университет» 29 мая 2024 год Г. Ижевск
				4. Удостоверение ПК № 612400044005,
				17.09.2024, «Научно-технологическое
				развитие Российской федерации в области
				АПК и машиностроения», 24 часа, ФГБОУ
				ВО "Донской государственный
				гехнический университет",
				г. Ростов-на-Дону
	<u> </u>	l .		г. гостов на допу