Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмиру ПРИ ПЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Должность: Проректор по учебно-методической работе

Должность: Проректор по учеоно-методической расоте СИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 27.10.2025 14:47:19

Уникальный программный фрдЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
b066544b2010440ed9b5c27025734e6742274b2

b066544bae1 66654C3 ОВА СЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ХОЛОДИЛЬНОЙ И ТОРГОВОЙ ТЕХНИКИ ИМЕНИ ОСОКИНА В.В.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.14 ТЕПЛО-ХЛАДОТЕХНИКА

(название учебной дисциплины)

Укрупненная группа направлений подготовки 19.00.00 Промышленная экология и биотехнологии)

Программа высшего образования – программа бакалавриата Направление подготовки 19.03.04 Технология продукции и организация общественного питания

Профиль: -

Факультет ресторанно - гостиничного бизнеса

Курс, форма обучения:

очная форма обучения 3 курс

заочная форма обучения 4 курс

Рабочая программа адаптирована для лиц с ограниченными возможностями здоровья и инвалидов (при наличии таких лиц)

> Донецк 2025

Рабочая программа учебной дисциплины «Тепло-хладотехника» для обучающихся по направлению подготовки 19.03.04 Технология продукции и организация общественного питания, разработанная в соответствии с учебным планом, утвержденным Ученым советом ФГБОУ ВО «ДОННУЭТ»:

- в 2025 г. для очной формы обучения;
- в 2025г. для заочной формы обучения.

Разработчик: Карнаух В.В., профессор кафедры ХТТ, доктор технических наук, доцент

Рабочая программа утверждена на заседании кафедры холодильной и торговой техники имени Осокина В.В.

Протокол № 22 от "24" февраля _2025 года Заведующий кафедрой холодильной и торговой техники имени Осокина В.В.,

К.А.Ржесик

СОГЛАСОВАНО 1943

Декан факультета ресторанно - гостиничного бизнеса

И.В.Кощавка

Дата « Ду » за года 2025 года

ОДОБРЕНО

Учебно-методическим советом Университета

Протокол от «26» февраля 2025 года № 7

Председатель Л.В.Крылова (инициалы, фамилия)

© Карнаух В.В., 2025 год

КАФЕДРА ХОЛОДИЛЬНОЙ И

ТОРГОВОЙ ТЕХНИКИ ИМЕНИ ОСОКИНА В.В.

© ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», 2025 год

1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование показателя	Наименование укрупненной группы направлений подготовки,		тика учебной иплины
	направление подготовки,	очная	заочная форма
	профиль, программа высшего	форма	обучения
	образования	обучения	обучения
Количество зачетных	Укрупненная группа	-	рмируемая
единиц – 2	направлений подготовки		образовательных —
СДИПИЦ 2	19.00.00 Промышленная		шений
	экология и биотехнология	Offic	шенин
	· · · · · · · · · · · · · · · · · · ·		
	(код, название)		
	Направление подготовки 19.03.04 Технология		
	продукции и организация		
	общественного питания		
	(код, название)	_	
Модулей – 1	Профиль		ЦГОТОВКИ
Смысловых модулей – 3		_3й	<u>4-</u> й
Общее количество	(название)	Cen	иестр
		<u>_5</u> й	<u>_7</u> й
часов - 72			кции
		<u>32</u> час.	4 час.
Количество часов в	Программа высшего образования	Практически	е, семинарские
неделю для очной формы	– программа бакалавриата		RUTR
обучения: 4,5		<u>30</u> час.	<u>4</u> час.
		Лаборатор	ные занятия
аудиторных -4 ;		<u>-</u> час.	час.
самостоятельной работы		Самостояте	льная работа
обучающегося – 0,51		<u>8,15</u> час.	<u>61,15</u> час.
		Индивидуал	ьные задания:
		<u>3 TMK</u>	<u>контрольная</u>
		Форма про	межуточной
		аттеста	ции: зачет
		зачет	зачет

Соотношение количества часов аудиторных занятий и самостоятельной работы составляет:

для очной формы обучения -62:8,15 для заочной формы обучения -8:61,15

2. ЦЕЛЬ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины:

формирование знаний студентов в области теплотехники, создание фундамента для усвоения профилирующих дисциплин направления, развитие навыков и умения творческого использования основных закономерностей тепло-хладотехники при решении конкретных задач в области пищевой промышленности.

Задачи учебной дисциплины:

изучение основных законов термодинамики и теплопередачи; методов их применения для анализа и расчета процессов, используемых в тепловых и холодильных машинах и других теплотехнических установках; получение навыков работы с литературными и электронными базами справочных данных; освоение методов расчета термодинамических процессов в разнообразных теплоэнергетических и низкотемпературных установках; освоение методов термодинамического анализа и оценки эффективности процессов и циклов теплосиловых, теплонасосных и холодильных установок, котлоагрегатов. Получение навыков по определению количества теплоты, передаваемой теплопроводностью, конвекцией и излучением в узлах теплотехнического оборудования; определение потерь теплоты в теплотехнических системах пищевой промышленности.

3. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Учебная дисциплина Б1.В 14 Тепло-хладотехника

(шифр, название учебной дисциплины в соответствии с учебным планом) относится к базовой части ООП ВО.

Имеется логическая и содержательно-методическая взаимосвязь с дисциплинами «Высшая математика», «Физика», «Неорганическая химия».

Знания, полученные при изучении дисциплины «Тепло-хладотехника», будут использовании в таких курсах как: «Оборудование предприятий общественного питания», «Процессы и аппараты пищевых производств» и при выполнении тепловых расчетов в выпускной квалификационной работе (бакалаврской работе).

4. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения изучения учебной дисциплины у обучающегося должны быть сформированы компетенции и индикаторы их достижения:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ПК-8	ИД-1ПК-8
Разрабатывает проекты	Знает основные принципы реконструкции предприятий
реконструкции и технологического перевооружения действующих	индустрии питания
предприятий индустрии питания	ИД-2ПК-8
	Знает основные принципы составления
	производственной программы предприятия, организации
	производства
	ИД-3ПК-8
	Соблюдает принципы поточности технологического
	процесса производства кулинарной продукции при
	проектировании предприятий

В результате изучения учебной дисциплины обучающийся должен:

знать:

- основные параметры состояния рабочих тел, единицы их измерения, приборы для определения этих параметров;
- основные теоретические положения взаимного преобразования теплоты и работы в тепловых машинах, включая холодильные;
- основные термодинамические характеристики рабочих тел, используемых в тепловых и холодильных машинах;
- количественные и качественные методы термодинамического анализа процессов и циклов тепловых двигателей и аппаратов, холодильных машин;
- основные законы теплопроводности, конвективного и лучистого теплообмена;
- способы расчета процессов теплообмена, в том числе при совместном участии нескольких видов теплообмена;
- способы моделирования теплообменных процессов;
- основы расчета теплообменных аппаратов;
- способы получения холода и холодильной обработки пищевых продуктов.

уметь: выполнять необходимые расчеты ДЛЯ грамотной эксплуатации технологического (теплового и холодильного) оборудования пищевых производств; подбирать и эффективно эксплуатировать теплотехническое оборудование; проводить необходимые термодинамические расчеты; анализировать характеристики систем теплотехнического теплоты, оборудования; рассчитывать количество передаваемое теплопроводностью, конвекцией и излучением в узлах теплотехнического оборудования, в частности холодильного; рассчитывать потери теплоты и тепловые сопротивления в теплотехнических системах;

владеть: навыками теплотехнического анализа всех термодинамических процессов; методами расчета термодинамических процессов реальных газов и паров; основами анализа рабочих процессов в тепловых и холодильных машинах, расчета параметров их работы, тепловой эффективности с использованием вычислительной техники и программного обеспечения; терминологией в области теплообмена, основными источниками информации и справочными данными по теплообмену, владеть инженерными методами рационального использования энергетических ресурсов.

5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Смысловой модуль 1. Основы технической термодинамики.

- Тема 1. Основные понятия и определения термодинамики.
- Тема 2. Газовые смеси. Теплоемкость идеальных газов и их смесей.
- **Тема 3**. Первый и второй законы термодинамики.

Смысловой модуль 2. Реальные газы. Циклы тепловых и холодильных машин

- Тема 4. Влажный воздух: процессы обработки, расчетные диаграммы.
- Тема 5. Реальные газы: уравнение состояния, процессы.
- Тема 6. Циклы тепловых машин и установок.
- Тема 7. Физические основы получения холода. Циклы холодильных машин.

Смысловой модуль 3. Теплопередача

- **Тема 8.** Введение в теплообмен. Теплопроводность как простой вид теплообмена.
- Тема 9. Конвективный теплообмен.
- **Тема 10**. Теплообмен излучением.
- **Тема 11**. Сложный теплообмен. Теплообменные аппараты в пищевой и холодильной индустрии.

6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

	Количество часов											
Название		очная	и фор	ма обу	/чения		заочная форма обучения					
смысловых модулей				з том ч						в том		
и тем	всего	л1	п ²	лаб ³	инд ⁴	CPC ⁵	всего	Л	П	лаб	инд	CPC
1	2	3	4	5	6	7	8	9	10	11	12	13
		•	,	M	одуль	1	•		,	•	•	
Смысловой модуль 1. Основы технической термодинамики												
Тема 1. Основные												
и киткноп	4,5	2	2	_	_	0,5	3,2	0,2	_	_	_	5
определения	.,.	_	_			0,2	3,2	٠,-				
термодинамики.												
Тема 2. Газовые												
смеси.	0	١,										_
Теплоемкость	9	4	4	-	-	1	6,5	0,5	1	-	-	5
идеальных газов и												
их смесей.												
Тема 3. Первый и	15	2	2			0.5	5.2	0.2				_
второй законы	4,5	2	2	-	-	0,5	5,3	0,3	-	-	-	5
термодинамики.												
Итого по	18	8	8			2	17	1	1			15
смысловому	10	O	0	_	_	2	1/	1	1	_	_	13
модулю 1 Смысловой модуль 2. Реальные газы. Циклы тепловых и холодильных машин												
	2. Реаль	ные	газы	. Цик. 	ты теп 	ловых	и холод	ильн	ЫХ М	<u>ташиі</u>	H	
Тема 4. Влажный												
воздух: процессы	8,5	4	4	_	_	0,5	6,5	0,5	1	_	_	5
обработки,	0,5					0,5	0,5	0,5	1			
расчетные												
диаграммы. Тема 5. Реальные												
	4.5		_			0.5						_
газы: уравнение	4,5	2	2	-	-	0,5	5,5	0,5	-	-	-	5
состояния, процессы.												
Тема 6. Циклы												
тепловых машин и	5	2	2	_	_	1	6,5	0,5	_	_	-	6
установок.												
Тема 7. Физические						1						
основы получения												
холода. Циклы	11	6	4	-	-	1	7,5	0,5	1	-		6
холодильных												
машин.												
Итого по												
смысловому	29	14	12	-		3	26	2	2	-	_	22
модулю 2												
Смысловой модуль	3. Тепло	опере	дача	_			_			,	_	
Тема 8. Введение в												
теплообмен.	_					0.5	(2	0.2				
Теплопроводность –	5	2	2	-	-	0,5	6,2	0,2	-	-	-	6
как простой вид												
теплообмена.												

Тема 9.	0	4	4			0.5	6.0	0.2	0.5			
Конвективный	8	4	4	-	-	0,5	6,8	0,3	0,5	-	-	6
теплообмен.												
Тема 10.	_											
Теплообмен	5	2	2	-	-	1	6,2	0,2	-	-	-	6
излучением.												
Тема 11. Сложный												
теплообмен.												
Теплообменные	0.05	_	_			1 17	6.05	0.2	0.5			(1.5
аппараты в	8,85	2	2	-	-	1,15	6,95	0,3	0,5	-		6,15
пищевой и												
холодильной												
индустрии.												
Итого по	22.15	10	10			2.15	2615		_			2415
смысловому	23,15	10	10	-		3,15	26,15	1	1			24,15
модулю 3												
Всего часов:	70,15	32	30	-	-	8,15	69,15	4	4			61,15
Катт					1,6						0,6	
CP						8,15						61,15
ИК												
КЭ												
Каттэк					0,25						0,25	
Контроль											2	
Всего часов	72	32	30		1,85	8,15	72	4	4		2,85	61,15

Примечания: 1. л – лекции;

- 2. п практические (семинарские) занятия;
- 3. лаб лабораторные занятия;
- 4. инд индивидуальные занятия;
- 5. СРС самостоятельная работа.

7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

No	Название темы	Количес	тво часов
Π/Π		очная форма	заочная форма
1	Основные понятия и определения термодинамики.	2	-
2	Газовые смеси. Теплоемкость идеальных газов и их смесей.	4	1
3	Первый и второй законы термодинамики.	2	-
4	Влажный воздух: процессы обработки, расчетные	4	1
	диаграммы.		
5	Реальные газы: уравнение состояния, процессы.	4	-
6	Циклы тепловых машин и установок.	2	-
7	Физические основы получения холода. Циклы	2	1
	холодильных машин.		
8	Введение в теплообмен. Теплопроводность – как	2	-
	простой вид теплообмена.		
9	Конвективный теплообмен.	4	0,5
10	Теплообмен излучением.	2	-
11	Сложный теплообмен. Теплообменные аппараты в	2	0,5
	пищевой и холодильной индустрии.		
Всего	o:	30	4

8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

№ п/п	Название темы	Количество часов		
		очная форма	заочная форма	
	не предусмотрены учебным планом			

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Название темы	Количест	во часов
		Очная форма	Заочная форма
1	Основные понятия и определения термодинамики.	0,5	5
2	Газовые смеси. Теплоемкость идеальных газов и их смесей.	1	5
3	Первый и второй законы термодинамики.	0,5	5
4	Влажный воздух: процессы обработки, расчетные диаграммы.	0,5	5
5	Реальные газы: уравнение состояния, процессы.	0,5	5
6	Циклы тепловых машин и установок.	1	6
7	Физические основы получения холода. Циклы холодильных машин.	1	6
8	Введение в теплообмен. Теплопроводность – как простой вид теплообмена.	0,5	6
9	Конвективный теплообмен.	0,5	6
10	Теплообмен излучением.	1	6
11	Сложный теплообмен. Теплообменные аппараты в пищевой и холодильной индустрии.	1,15	6,15
Всего:		8,15	61,15

10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации учебной дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- 1) для слабовидящих:
 - лекции оформляются в виде электронного документа;
- письменные задания оформляются увеличенным шрифтом или заменяются устным ответом;
 - 2) для глухих и слабослышащих:
 - лекции оформляются в виде электронного документа;
 - письменные задания выполняются на компьютере в письменной форме;
- зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования с использованием Moodle.
 - 3) для лиц с нарушениями опорно-двигательного аппарата:
 - лекции оформляются в виде электронного документа;
 - письменные задания заменяются устным ответом;
 - зачёт проводятся в устной форме.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для слепых и слабовидящих:
 - в печатной форме увеличенным шрифтом;
 - в форме электронного документа;
 - в форме аудиофайла.
- 2) для глухих и слабослышащих:
 - в печатной форме;
 - в форме электронного документа.
- 3) для обучающихся с нарушениями опорно-двигательного аппарата:
 - в печатной форме;
 - в форме электронного документа;
 - в форме аудиофайла.

11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Темы для реферата

- 1. Третий закон термодинамики. Формулировка и основное содержание.
- 2. Эксергия и эксергетичекий баланс термодинамической системы.
- 3. Схема и цикл работы (в p-v и T-s координатах) турбореактивного двигателя.
- 4. Схемы и цикл работы (в p-v и T-s координатах) воздушной холодильной машины.
- 5. Схема и цикл работы (p-v и T-s координатах) паровой холодильной машины.
- 6. Реальные циклы газотурбинных установок. Примеры внедрения.
- 7. Действительные циклы поршневых двигателей внутреннего сгорания. Определение КПД двигателя.
- 8. Конструкция современных экологично безопасных двигателей. Область применения.
- 9. Теплопроводность при нестационарном тепловом режиме. Примеры
- 10. Особенности теплоотдачи при изменении агрегатного состояния вещества.
- 11. Основные критериальные числа тепломассообмена. Методика определения коэффициента тепломассопереноса.
- 12. Основные уравнения тепломассопереноса. Число Льюиса.
- 13. Особенности термодинамических процессов в градирнях.
- 14. Примеры конструкций теплообменников с непосредственным контактом сред.
- 15. Анализ открытых термодинамических систем.
- 16. Уравнения, описывающие процессы дросселирования газов и паров.
- 17. Работа с фазовыми таблицами ASHRAE (American Society of Heating, Refrigeration, and Air-Conditioning Engineers);
- 18. Изучение схемы и принципа работы двигателя Стирлинга.
- 19. Холодильные методы обработки пищевых продуктов.
- 20. Современные способы обработки и хранения пищевых продуктов.
- 21. Классификация и примеры торгового холодильного оборудования.

- 22. Классификация холодильников.
- 23. Особенности конструкции промышленных холодильников.

Аудиторная контрольная работа Задача <u>1</u>

Смесь идеальных газов имеет начальные параметры p_1 , t_1 , нагревается при постоянном объеме до t_2 , а затем охлаждается при постоянном давлении до начальной температуры t_1 .

<u>Определить</u>: объемный состав газовой смеси; конечное давление и объем смеси; работу (L), теплоту (Q) и изменение внутренней энергии (ΔU), энтальпии (ΔI) и энтропии (ΔS) смеси в процессах.

<u>Изобразить</u> процессы в *p-v* и *T-s* диаграммах.

Данные для решения задачи выбрать из таблицы 1.

Таблица 1 – Исходные данные к задаче 1

Предпослед- няяцифра	Ma	Масса компонентов газовой смеси, кг				Давление, МПа	Послед- няяцифра	Темпер °(ратура, С
шифра	N_2	02	CO_2	H_2O	H_2	p_1	шифра	t_1	<i>t</i> ₂
0	2,5	-	1,8	0,7	0,3	1	0	400	800
1	3,0	1,0	4,0	-	0,5	2	1	100	600
2	4,2	0,8	4,0	0,5	-	3	2	300	900
3	-	1,2	2,5	0,9	1,1	4	3	100	300
4	3,7	-	3,0	0,3	1,2	8	4	200	500
5	2,8	1,1	-	0,8	3,2	6	5	200	800
6	2,9	1,4	2,7	-	3,0	7	6	100	700
7	-	2,0	5,2	3,7	1,8	5	7	200	700
8	4,0	-	3,2	2,5	2,0	4	8	400	900
9	3,5	0,9	-	0,6	4,0	3	9	100	400

Задача 2

Для теоретического цикла газового поршневого двигателя внутреннего сгорания (ДВС) с изохорно-изобарным подводом теплоты по заданным значениям начального давления p_I и температуры t_I , степени сжатия ε , степени повышения давления λ и степени предварительного расширения ρ определить параметры состояния p_I , p_I , p_I в характерных точках цикла, полезную работу и термический КПД.

Изобразить цикл ДВС в *p-v* и *T-s* диаграммах.

Данные необходимые для расчета задачи выбрать из таблицы 2.

Таблица 2 – Исходные данные для задачи 2

Предпос-	исходиые дани			Последняя			
ледняя	Рабочее	p_1 ,	t_{I} ,	цифр	$oldsymbol{arepsilon}$	λ	ρ
цифра	тело			шифра			
шифра		кПа	$^{\mathrm{o}}\mathrm{C}$				
0	H_2O	96	22	0	17	1,6	1,3
1	N_2	97	24	1	16	1,7	1,3
2	Не	95	18	2	19	1,3	1,5
3	Воздух	101	15	3	15	1,5	1,4
4	CH4	98	32	4	14	1,8	1,3
5	O_2	99	30	5	13	1,7	1,3
6	CO_2	100	23	6	15	1,6	1,4
7	Воздух	97	25	7	16	1,4	1,6
8	N_2	96	20	8	17	1,5	1,7
9	CO	95	17	9	18	1,3	1,4

Задача 3

Паросиловая установка работает по циклу Ренкина. Давление пара перед турбиной p_1 , его температура t_1 . Адиабатное расширение пара в турбине происходит до атмосферного давления p_2 . Определить КПД паросиловой установки. Как изменится КПД, если давление и температуру увеличить соответственно до p'_1 и t'_1 , а на выходе пара из турбины установить конденсатор, в котором давление p'_2 ?

<u>Изобразить</u> процессы в *i-s*– диаграмме водяного пара.

Данные, необходимые для решения задачи, выбрать из таблицы 3

Таблица 3 – Исходные данные к задаче 3

Предпос-	Давление	Темпе-	Давление	Послед-	Давление	Темпе-	Давление
ледняя цифра	пара перед	ратура	пара после	няя цифра	пара перед	ратура	пара после
шифра	турбиной,	пара, °С	турбины,	шифра	турбиной,	пара, °С	турбины,
	МΠа		МПа		МПа		МПа
	p_1	<i>t</i> 1	p_2		p_1'	t_1'	p_2'
	1					1	
0	4	310	0,1	0	15	550	0,05
1	8	350	0,13	1	17	580	0,04
2	6	330	0,12	2	14	570	0,03
3	10	420	0,11	3	18	550	0,02
4	9	360	0,1	4	20	610	0,01
5	13	310	0,11	5	18,5	630	0,009
6	12	440	0,1	6	16	550	0,007
7	3	340	0,13	7	17,5	640	0,005
8	11	320	0,1	8	15,5	530	0,01
9	5	430	0,12	9	17	600	0,05

Указание: Правильность определения параметров в точках можно проверить с помощью таблиц А.3 и А.4.Рекомендовано расчет выполнить в компьютерной программе «Диаграмма HS для воды и водяного пара».

Задача 4

В конденсаторе на горизонтальных трубах с внешним диаметром d_{mp} конденсируется влага. Водяной пар со степенью сухости x, давлением p_n . Найти средний коэффициент теплоотдачи и количество пара, которое сконденсируется за один час 1 п.м. трубы, температура поверхности которой t_{cm} . Сравнить полученные результаты, при вертикальном расположении трубы. В обоих случаях режим течения пленки ламинарный.

Данные, необходимые для решения задачи, выбрать из таблицы 4

Таблица 4— Исходные данные к задаче 4

Предпос-	Внешний	Степень	Последняя	Давление	Температура
ледняя цифра	диаметртрубы,мм		цифра шифра		стенки, °С
шифра	1 10	J		1	,
	d_{mp}	x		$p_{\scriptscriptstyle H}$	t_{cm}
0	4	310	0	15	550
1	8	350	1	17	580
2	6	330	2	14	570
3	10	420	3	18	550
4	9	360	4	20	610
5	13	310	5	18,5	630
6	12	440	6	16	550
7	3	340	7	17,5	640
8	11	320	8	15,5	530
9	5	430	9	17	600

Задача 5

Выполнить расчет термодинамических характеристик паровой компрессионной машины, работающей на холодильном агенте R при заданных параметрах. Охлаждение компрессора воздушное. Система с регенеративным теплообменником (РТО). Построить цикл работы холодильной машины в фазовой диаграмме заданного холодильного агента R, с использованием компьютерных приложений CoolPack, REFPROF, FRİTERM, Solkane.

Определить:

- Удельную холодопроизводительность;
- Холодильный коэффициент;
- Удельную массу циркулирующего хладагента.;
- Площадь теплообменной поверхности испарителя.

Исходные данные, необходимые для решения задачи выбрать из таблицы 5

Таблица 5 – Исходные данные к задаче 5

Предпос- ледняя цифра шифра	Холодопроиз- водительность, кВт	Температура в охлаждаемом объеме, <i>toxn.объем</i> , ^o C	Последняя цифра шифра	Температура окружающей среды, <i>t</i> _{cp} ,	Холодильный агент
0	30	-4	0	25	R 134a
1	27	-2	1	20	R 600a
2	25	0	2	18	R 404a
3	33	+2	3	15	R 407c
4	24	-4	4	30	R 134a
5	30	-2	5	28	R 600a
6	27	0	6	27	R 404a
7	25	+2	7	17	R 407c
8	33	-5	8	25	R 134a
9	24	+4	9	27	R 600a

12. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ ОБУЧАЮЩИХСЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства детализируются по видам работ в оценочных материалах по учебной дисциплине, которые утверждаются на заседании кафедры.

Система оценивания по учебной дисциплине по очной форме обучения*

Форма контроля	Макс. количество баллов			
	За одну работу	Всего		
Текущий контроль:				
- дискуссия, устный опрос, собеседование (по	2	20		
каждой теме дисциплины)				
- лабораторная работа	3	15		
- тестирование (по каждому модулю)	10	35		
- разноуровневые задачи и задания (по каждой	3(1 задача)	30		
теме дисциплины)				
- текущий модульный контроль				
Промежуточная аттестация	Зачет	100		
Итого за семестр 100				

^{*} в соответствии с утвержденными оценочными материалами по учебной дисциплине

Система оценивания по учебной дисциплине по заочной форме обучения*

Форма контроля	Макс. количество баллов			
	За одну работу	Всего		
Текущий контроль:				
- дискуссия, устный опрос, собеседование (по	2	20		
каждой теме дисциплины)				
- реферат (по темам, изучаемым в дисциплине)	5	5		
- тестирование (по каждому модулю)	10	35		
- контрольная работа	8 (1 задача)	40		
- текущий модульный контроль				
Промежуточная аттестация	Зачет	100		
Итого за семестр	100			

^{*} в соответствии с утвержденными оценочными материалами по учебной дисциплине

Вопросы к зачету

- 1. Основные понятия и исходные положения технической термодинамики.
- 2. Термические параметры состояния рабочих тел. Единицы измерения. Уравнение состояния идеальных газов.
- 3. Калорические параметры состояния рабочих тел. Единицы измерения.
- 4. Газовые смеси. Законы газовых смесей. Молекулярная масса газовой смеси. Уравнение состояния для газовой смеси и компонентов.
- 5. Теплоемкость идеальных газов. Виды теплоемкостей. Связь между ними. Расчет количества тепла.
- 6. Зависимость теплоемкости идеальных газов от температуры. Расчет количества тепла через средние теплоемкости.
- 7. Влажный воздух. Основные понятия и определения. І-д диаграмма влажного воздуха.
- 8. Реальные газы. Основные понятия и определения. Термодинамические диаграммы реальных газов.
- 9. I-s диаграмма состояния водяного пара. Определение параметров состояния водяного пара.
- 10. Формулировки и математическое выражение первого закона термодинамики.
- 11. Теплота и работа как функции процесса. Аналитическое выражение теплоты и работы через параметры состояния. Графическое изображение.
- 12. Общая схема исследования термодинамических процессов идеального газа.
- 13. Аналитическое исследование изохорного процесса.
- 14. Аналитическое исследование изобарного процесса.
- 15. Аналитическое исследование изотермического процесса.
- 16. Аналитическое исследование адиабатного процесса.
- 17. Аналитическое исследование политропного процесса.
- 18. Второй закон термодинамики, его сущность и формулировки. Эффективность циклов.
- 19. Классификация тепловых машин.
- 20. Теоретический цикл ДВС с изохорным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 21. Теоретический цикл ДВС с изобарным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 22. Теоретический цикл ДВС со смешанным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 23. Принципиальная схема и теоретический цикл газотурбинной установки. Тепловой расчет цикла. Термический КПД.
- 24. Принципиальная схема паросиловой установки, работающей по циклу Ренкина. Термический КПД цикла.

- 25. Принципиальная схема и цикл воздушной холодильной машины. Тепловой расчет цикла. Холодильный коэффициент.
- 26. Принципиальная схема и цикл паровой компрессионной холодильной машины. Тепловой расчет цикла. Холодильный коэффициент.
- 27. Холодильные методы обработки пищевых продуктов.
- 28. Современные способы обработки и хранения пищевых продуктов.
- 29. Требования к торговому холодильному оборудованию.
- 30. Классификация и примеры торгового холодильного оборудования.
- 31. Классификация холодильников.
- 32. Особенности конструкции промышленных холодильников.
- 33. Принципиальная схема и цикл парового теплового насоса. Тепловой расчет цикла. Отопительный коэффициент.
- 34. Основные понятия и определения теории теплообмена. Виды переноса теплоты.
- 35. Теплообмен теплопроводностью. Закон Фурье для стационарного режима. Коэффициент теплопроводности.
- 36. Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности.
- 37. Теплопроводность плоской одно- и многослойной стенки при стационарном режиме.
- 38. Теплопроводность цилиндрической одно- и многослойной стенки при стационарном режиме.
- 39. Конвективный теплообмен. Закон Ньютона Рихмана. Коэффициент теплоотдачи. Факторы, влияющие на коэффициент.
- 40. Сущность, основные понятия и определения теории подобия. Критерии подобия. Основные критерии подобия конвективного теплообмена.
- 41. Конвективный теплообмен при вынужденном, свободном движении и фазовых переходах жидкости. Общий вид критериальных уравнений.
- 42. Теплообмен изучением. Основные понятия. Законы теплового излучения. Приведенный коэффициент излучения.
- 43. Теплопередача как частный случай сложного вида теплообмена. Коэффициент теплопередачи. Термическое сопротивление.
- 44. Назначение и классификация теплообменных аппаратов.
- 45. Теплопередача в теплообменных аппаратах при переменной температуре теплоносителей. Баланс тепла. Средний температурный напор.
- 46. Конструкторский и поверочный расчет теплообменных аппаратов.

13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

(для зачета)

Сумма,	Текущее тестирование и самостоятельная работа, балл										
балл	пь №2 Смысловой модуль № 3			Смысловой модуль №2			уль №1	ювой мод	Смысл		
100	T 11	T 10	T 9	T8	T 7	T 6	T 5	T 4	T 3	T 2	ΤI
100	9	9	8	8	9	9	9	9	10	10	10
100	34			36			30				

Соответствие государственной шкалы оценивания академической успеваемости

Сумма баллов за	По государственной	Определение	
все виды учебной	шкале		
деятельности			
90-100	«Отлично» (5)	отлично – отличное выполнение с	
		незначительным количеством неточностей	
80-89	«Хорошо» (4)	хорошо – в целом правильно выполненная	
		работа с незначительным количеством	
		ошибок (до 10 %)	
75-79		хорошо – в целом правильно выполненная	
		работа с незначительным количеством	
		ошибок (до 15 %)	
70-74	«Удовлетворительно» (3)	ворительно» (3) удовлетворительно – неплохо,но со	
		значительным количеством недостатков	
60-69		удовлетворительно – выполнение	
		удовлетворяет минимальные критерии	
35-59	«Неудовлетворительно»	неудовлетворительно – с	
	(2)	возможностью повторной аттестации	
0-34		неудовлетворительно –	
		с обязательным повторным изучением	
		дисциплины выставляется комиссией)	

14. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная:

- 1. Техническая термодинамика [Текст] : учебник / М-во образования и науки Донец. Нар. Респ., Гос. орг. высш. проф. образования «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», Гос. образоват. учреждение высш. проф. образования «Донецкий национальный технический университет» ; коллектив авт.: Карнаух В.В., Бирюков А.Б., Ржесик К.А., Лебедев А.Н. Донецк : ДонНУЭТ, 2020. 486с. ISBN 978-5-91556-928-6.
- 2. Теплотехника [Электронный ресурс] : учебник для вузов / А. А. Александров [и др.] ; ред. А. М. Архарова, В. Н. Афанасьева . 5-е изд. М. : МГТУ им. Н. Э. Баумана, 2017. Локал. компьютер сеть НБ ДонНУЭТ.
- 3. Теплообмен: теория и практика [Текст] : рекоменд. М-вом образования и науки ДНР как учеб. для высш. образоват. учреждений / [коллектив авт.: В. В. Карнаух, А. Б. Бирюков, С. И. Гинкул, К. А. Ржесик, П. А. Гнитиев] ; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, ГОУ ВПО "Донец. нац. техн. ун-т". Донецк : ДонНУЭТ, 2018. 327, [1] с. : табл., рис.
- 4. Стоянов, Н. И. Теоретические основы теплотехники (техническая термодинамика и тепломассообмен) : учебное пособие / Н. И. Стоянов, С. С. Смирнов, А. В. Смирнова. Ставрополь : Северо-Кавказский федеральный университет, 2014. 226 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/63139.html (дата обращения: 21.09.2023). Режим доступа: для авторизир. пользователей

Дополнительная:

1. Амирханов, Д. Г. Техническая термодинамика: учебное пособие / Д. Г. Амирханов, Р. Д. Амирханов; под редакцией Е. И. Шевченко. — Казань: Казанский национальный исследовательский технологический университет, 2014. — 264 с. — ISBN 978-5-7882-1664-5. — Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. — URL: http://www.iprbookshop.ru/63486.html (дата обращения: 21.09.2023). — Режим доступа: для авторизир. Пользователей

2. Холодильное оборудование предприятий пищевой промышленности [Текст] : учеб. пособие / В. В. Осокин [и др.] ; М-во образования и науки Украины, Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, Одес. нац. акад. пищевых технологий. - Донецк, О. : [ДонНУЭТ], 2011. - 255 с.

Электронные ресурсы:

- 1. Тепло- и хладотехника : методические указания для выполнения **лабораторны**х работ обучающимися направления подготовки 19.03.04 Технология продукции и организации общественного питания образовательного уровня бакалавриат, очной и заочной форм обучения / В.В. Карнаух, Ю.В. Пьянкова Донецк: ДОННУЭТ, 2025. 62 с. Текст электронный.
- 2. Тепло-хладотехника [электр.ресурс]: **консп.лекц**. для студ. напр. подг. 19.03.02 Продукты питания из растительного сырья; 19.03.03 Продукты питания животного происхождения образовательного уровня бакалавриат, очной и заочной форм обучения / В.В.Карнаух, Донецк: ГО ВПО «ДонНУЭТ», 2024. 105 с.
- 3. Тепло-хладотехника: методические указания для **самостоятельного** изучения дисциплины для обучающихся по направления подготовки 19.03.02 Продукты питания из растительного сырья; 19.03.03 Продукты питания животного происхождения образовательного уровня бакалавриат, очной и заочной форм обучения / В.В. Карнаух, Ю.В. Пьянкова Донецк: ДОННУЭТ, 2024. 93 с.
- 4. Тепло-хладотехника: методические указания для **практической** работы по теме «Физические основы получения холода. Циклы холодильных машин» для обучающихся по направлениям подготовки 19.03.02 Продукты питания из растительного сырья; 19.03.03 Продукты питания животного происхождения, 19.03.04 Технология продукции и организация общественного питания образовательного уровня бакалавриат, очной и заочной форм обучения / В.В. Карнаух, Ю.В. Пьянкова Донецк: ДОННУЭТ, 2023. 34 с.
- 5. Техническая термодинамика [Электронный ресурс] конспект лекций для студентов направлений подготовки 19.03.04 Технология продукции и организация обществ. питания (спец. Технологии в ресторан. хоз-ве) обучения: 13.03.03 Энергет. машиностроение (профиль Холодил. машины и установки), 15.03.02 Технолог. машины и оборуд. (профиль Оборуд. перераб. и пищ. п-в» образоват. уровня бакалавриат, оч. и заоч. форм / В. В. Карнаух; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. холодильной и торговой техники имени Осокина В.В. Донецк: ДонНУЭТ, 2019. Локал. компьютер сеть НБ ДонНУЭТ.
- 6. Техническая термодинамика: методические рекомендации к выполнению **лабораторных** работ для студентов укрупненной группы 13.00.00 Электро- и теплоэнергетика направления подготовки 13.03.03 Энергетическое машиностроение (профиль Холодильные машины и установки), образовательного уровня бакалавриат, очной и заочной форм обучения / Карнаух В.В., Пьянкова Ю.В., Коновал А.С.; ГО ВПО «Донец.нац. ун-т. экономики и торговли имени Михаила Туган-Барановского», каф. холод. и торг. техникиим. Осокина В.В. Донецк: [ДонНУЭТ], 2020. 93 с.
- 7. Теплотехника: метод. указ. к самост. изуч. темы «Реальные газы. водяной пар» для обуч.направл подг.: 13.03.03 Энергетическое машиностроение, 15.03.02 Технологические машины и оборудование, 19.03.04 Технология продукции и организация общественного питания, 19.03.03 Продукты питания животного происхождения, 19.03.02 Продукты питания из растительного сырья, 21.05.04 Горное дело очн. и заоч. форм обучения / В.В. Карнаух, А.Н. Лебедев; Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, каф. холод.и торг. техники, Донец. нац. техн. ун-т, каф. пром. теплоэнерг. Донецк: ДонНУЭТ-ДонНТУ, 2024. 36 с.

Электронные ресурсы дополнительные:

1.Дистанционный курс в системе Moodle. Режим доступаhttps://distant.donnuet.education/course/view.php?id=1192

- 2.Лекция на канале RUTUBE «Дистанционное обучение ДонНУЭТ» по теме «I-d Диаграмма состояния влажного воздуха: структура и область применения», ссылка: https://rutube.ru/video/5c23476b49a66a0e13bb00ede28c9946/
- 3.Лекция на канале RUTUBE «Дистанционное обучение ДонНУЭТ» по теме «О применении критериев TEWI, LCCP и LCC для сравнения энергопреобразующих холодильных систем» ссылка: https://rutube.ru/video/b89cdb7a9bdeaf0e9aeb5f44c31553e0/
- 4.Лекция на канале YOUTUBE «Дистанционное обучение ДонНУЭТ» по теме холодильные агенты, Режим доступа: https://www.youtube.com/watch?v=VC4xrWazdpl&t=114s
- 5.Лекция на канале YOUTUBE «Дистанционное обучение ДонНУЭТ» по теме «Фазовые диаграммы реальных газов» Режим доступа: https://www.youtube.com/watch?v=ZyZvM5nQknA&t=102s

15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

- 1. Автоматизированная библиотечная информационная система Unilib UC : версия 2.110 // Научная библиотека Донецкого национального университета экономики и торговли имени Михаила Туган-Барановского. [Донецк, 2021–]. Текст : электронный.
- 2.Электронный каталог Научной библиотеки Донецкого национального университета экономики и торговли им. Михаила Туган-Барановского. Донецк : НБ ДОННУЭТ, 1999– . URL: http://catalog.donnuet.ru. Текст : электронный.
- 3. Автоматизированная интегрированная библиотечная система (АИБС) «МегаПро». Москва : ООО «Дата Экспресс», 2024—. Текст : электронный.
- 4.IPR SMART : весь контент ЭБС Ipr books : цифровой образовательный ресурс / ООО «Ай Пи Эр Медиа». Саратов : Ай Пи Эр Медиа, 2007 URL: http://www.iprbookshop.ru. Режим доступа: для авторизированных пользователей. Текст. Аудио. Изображения : электронные.
- 5.Лань : электронная-библиотечная система. Санкт-Петербург : Лань, сор. 2011–2024. URL: https://e.lanbook.com/ Режим доступа: для авторизированных пользователей. Текст : электронный.
- 6.СЭБ: Консорциум сетевых электронных бибилиотек / Электронная-библиотечная система «Лань» при поддержке Агентства стратегических инициатив. Санкт-Петербург: Лань, сор. 2011–2024. URL: https://seb.e.lanbook.com/ Режим доступа: для пользователей организаций участников, подписчиков ЭБС «Лань». Текст: электронный.
- 7. Polpred : электронная библиотечная система : деловые статьи и интернет-сервисы / ООО «Полпред Справочники». Москва : Полпред Справочники, сор. 1997—2024. URL: https://polpred.com. Текст : электронный.
- 8.Book on lime : дистанционное образование : электронная библиотечная система / издательство КДУ МГУ им. М.В. Ломоносова. Москва : КДУ, сор. 2017 —. URL:https://bookonlime.ru. Текст . Изображение. Устная речь : электронные.
- 9.Информио : электронный справочник / ООО «РИНФИЦ». Москва : Издательский дом «Информио», 2009 URL: https://www.informio.ru. Текст : электронный.
- 10.Университетская библиотека онлайн : электронная библиотечная система. ООО «Директ-Медиа», 2006—. URL: https://biblioclub.ru/ Режим доступа: для авторизированных пользователей. Текст : электронный.
- 11.Научно-информационный библиотечный центр имени академика Л.И. Абалкина / Российский экономический унтиниверситет имени В.Г. Плеханова. Москва: KnowledgeTree Inc., 2008— . URL: http://liber.rea.ru/login.php. Режим доступа: для авторизированных пользователей. Текст: электронный.
- 12. Библиотечно-информационный комплекс / Финансовый университет при Правительстве Российской Федерации. Москва : Финансовый университет, 2019— . URL: http://library.fa.ru/ Режим доступа: для авторизированных пользователей. Текст : электронный.
- 13.Зональная научная библиотека имени Ю.А. Жданова / Южный федеральный университет. Ростов-на-Дону : Южный федеральный университет, 2016 . –

URL: https://library.lib.sfedu.ru/ — Режим доступа: для авторизированных пользователей. — Текст : электронный.

14.Научная электронная библиотека eLIBRARY.RU: информационно- аналитический портал / ООО Научная электронная библиотека. — Москва : ООО Научная электронная библиотека, сор. 2000—2024. — URL: https://elibrary.ru. — Режим доступа: для зарегистрированных пользователей. — Текст : электронный.

15.CYBERLENINKA : Научная электронная библиотека «КиберЛенинка» / [Е. Кисляк, Д. Семячкин, М. Сергеев ; ООО «Итеос»]. — Москва : КиберЛенинка, 2012 — . — URL:http://cyberleninka.ru. — Текст : электронный.

16.Национальная электронная библиотека : НЭБ : федеральная государственная информационная система / Министерство культуры Российской Федерации [и др.]. — Москва : Российская государственная библиотека : ООО ЭЛАР, [2008 —]. — URL: https://rusneb.ru/ — Текст. Изображение : электронные.

16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используются мультимедийные средства (проектор, ноутбук).

Лекции-презентации, представленные в компьютерной программе Power Point: «Теплоемкость идеальных газов», «Реальные газы», «Теплопроводность», «Классификация теплообменных аппаратов», «Теплоотдача» «Фазовые диаграммы холодильных агентов» Компьютеризированные мини-фильмы на тему «Классификация и принцип работы ДВС», «Работа теплового насоса», «Принцип работы холодильника», «Принцип работы солнечных коллекторов», демонстрируемые на плазменной панели.

Лабораторные стенды: «Определение коэффициента теплопроводности методом трубы», «Исследование процесса теплоотдачи при свободном движении воздуха», «Исследования процесса излучения», «Исследование изохорного процесса» и другие. Комплект диаграмм I-s, i-d, t-d.

Модель двигателя внутреннего сгорания.

Модель автономного кондиционера. Действующая модель сплит-системы.

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Фамилия, имя,	Условия	Должность,	Уровень	Сведения о дополнительном
отчества	привлечения	ученая	образования,	профессиональном
	(по основному	степень,	наименование	образовании*
	месту работы,	ученое звание	специальности,	
	на условиях		направления	
	внутреннего/		подготовки,	
	внешнего		наименование	
	совместительства;		присвоенной	
	на условиях		квалификации	
	договора			
	гражданско-			
	правового			
	характера (далее			
	– договор ГПХ)			
				1. Сертификат о прохождении
				очного повышения
Карнаух Виктория	По основному			квалификации по программе
Викторовна	По основному месту работы			«Энергомашиностроение»
				(объем 36 час.) в институте
				двигателей и энергетических
				установок ФГАОУВО

«Самарский нашиональный исследовательский Должность-Высшее, университет имени академика оборудование С.П.Королева», профессор г. Самара) с 18 по 29 апреля перерабатыва кафедры 2022г. холодильной ющих И 2. торговой пищевых Свидетельство И повышении квалификации № техники производств, B.B. 771802829972 от 27.05.2022г. имени инженер-Осокина, механик, «Работа В электронной информационнодоктор диплом доктора образовательной среде» технических ФГБОУВО наук, ученое «Российский технических звание наук экономический университет ДОК №005148 имени Г.В.Плеханова», доцент г. Москва; Свидетельство повышении квалификации № 771802829900 от 27.05.2022г. «Цифровая трансформация ФГБОУВО управления» экономический «Российский университет имени Г.В.Плеханова», г. Москва. Удостоверение повышении квалификации № 612400031805 от 09.06.2023г. «Организационнометодические аспекты разработки и реализации программ высшего образования направлениям подготовки физико-технические науки и ФГБОУВО технологии» «Донской государственный технический университет», г. Ростов-на-Дону. 5. Удостоверение № 612400044003 о повышении квалификации ДГТУ «Научно-технологическое развитие РФ в области АПК и машиностроения» с 17- $19.09.2024\Gamma$.; 6. Удостоверение № 7220324004406 о повышении квалификации Тюменский гос. университет «Методика антикоррупционного просвещения и воспитания в организациях высшего образования; выписка протокола ИЗ заседания кафедры № 5 от 14.10.2024 0 внедрении

результатов в учебный
процесс
7.Программа
профессиональной
переподготовки по
программе «Промышленная
теплоэнергетика» на базе
ФГБОУ ВО «Поволжский
государственный
технологический
университет», кол-во 260
часов. Диплом №ПП 002266
от 15.01.2025г.
8.Удостоверение №
692417488791 от 04.03.2025г.
о прохождении
дополнительной
профессиональной
программы «Стартап как
диплом: вопросы руководства
и подготовки», кол-во часов
36, на базе ФГБОУ ВО
«Тверской государственный
университет»