Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вочеславовна МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 27.10.2025 13:53:51

Уникальный программный ключ:

b066544bae1e449cd8bfce392f77274a676a2771b7 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ОБЩЕИНЖЕНЕРНЫХ ДИСЦИПЛИН

УТВЕРЖДАЮ Проректор по учебно-методической работе Л.В. Крылова (подпись) 2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.18 ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Укрупненная группа направлений подготовки 19.00.00 Промышленная
экология и биотехнология
Программа высшего образования – программа бакалавриата
Направление подготовки 19.03.02 Продукты питания из растительного сырья
Профиль: Технология мучных и кондитерских изделий
Факультетресторанно-гостиничного бизнеса
Форма обучения, курс: очная форма обучения, <u>2</u> курс (план 2025) заочная форма обучения, <u>3</u> курс (план 2025)

Рабочая программа адаптирована для лиц с умеренными нарушениями функций зрения, слуха и речи

> Донецк 2025

Рабочая программа учебной дисциплины «Электротехника и электроника» для обучающихся по направлению подготовки 19.03.02 Продукты питания из растительного сырья, профилю Технология мучных и кондитерских изделий, разработанная в соответствии с учебным планом, утвержденным Ученым советом ФГБОУ ВО «ДОННУЭТ»:

- в 2025 г. для очной формы обучения;
- в 2025 г. для заочной формы обучения.

Разработчик: Соколов Сергей Анатольевич, зав.кафедрой ОИД, д.т.н, профессор

Зав. кафедрой (подпись)	КАФЕДРА ОБЩЕИНЖЕНЕРНЫХ ДИСЦИПЛИЯ.А. Соколов (инициалы, фамилия)
СОГЛАСОВА	HO OS
Декан факульт	ета ресторанно-гостинничного бизнеса
(подпись)	<u>И.В. Кощавка</u> (инициалы, фамилия)
Дата « С по	2025 года
ОДОБРЕНО	
	цическим советом ФГБОУ ВО «ДОННУЭТ»
Протокол от	« <u>Ж</u> »2025 года №_ Z
Председатель учебно-метод	дического совета

© Соколов С.А., 20245 год © ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», 2025 год

1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование показателя	Наименование укрупненной группы /		гика учебной плины		
	Направление подготовки / Профиль / Программа высшего образования	очная форма обучения	заочная форма обучения		
Количество зачетных единиц – 3 Модулей – 1	Укрупненная группа направлений подготовки 19.00.00 Промышленная экология и биотехнология	Обязател	ьная часть		
Смысловых модулей – 3	Направление подготовки 19.03.02 Продукты питания				
Индивидуальные научно-	<u>из растительного сырья</u>		готовки:		
исследовательские задания:		2- й	3-й		
углубленное изучение			естр		
отдельных вопросов по электротехнике и электронике.		4-й			
Общее количество часов – 108		Лек	сции		
		32 час.	4 час.		
Количество часов в неделю для очной формы обучения:	Профиль	Практические, семинарские занятия			
аудиторных – 4;	<u>Технология мучных и</u> кондитерских изделий	30 час.	6 час.		
самостоятельной работы	коноитерских изоелии	Лабораторные занятия			
обучающегося – 3		-	-		
		Самостояте.	льная работа		
		44,15 час.	95,15 час.		
	Образовательная программа		ьные задания		
	высшего образования –		ов (ауд.):		
	бакалавриат	1,85 час.	2,85 час.		
	ounanaopuani		межуточной		
			гации:		
		,	т с оценкой,		
		экзамен)			
		Зачёт			

Соотношение количества часов аудиторных занятий и самостоятельной работы составляет: для очной формы обучения — 62/46 для заочной формы обучения — 10/98

2. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: формирование у студентов теоретических знаний физических основ функционирования современных элементов электрических устройств, принципов работы электроустановок и их характеристик, электронных схем и функциональных узлов аналоговой и цифровой электроники и микроэлектроники, а также, практических навыков в области физического эксперимента по изучению их характеристик.

Задачи учебной дисциплины: подготовка студентов к самостоятельному проведению технического обслуживания электроустановок и электрооборудования в отрасли, теоретическая и практическая подготовка инженеров неэлектротехнических специальностей в области электротехники и электроники в такой мере, чтобы они могли выбирать необходимые электрические, электронные и микропроцессорные устройства и оснастку, уметь их правильно и рационально эксплуатировать и составлять технические задания инженерам-электрикам на разработку электрических частей автоматизированных устройств для управления технологическими производственными процессами.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина <u>Б1.О.18 Электротехника и электроника</u> относится к обязательной части ОПОП.

Обеспечивающие дисциплины: «Физика», «Высшая математика», «Инженерная графика», «Компьютерная графика»

Обеспечиваемые дисциплины: «Проектирование предприятий пищевой промышленности», «Оборудование предприятий отрасли (мясо-молочная и рыбная)»

Перед изучением дисциплины студент должен:

знать:

- основные законы электротехники для электрических и магнитных цепей;
- методы измерения электрических и магнитных величин;
- устройство и принцип работы трансформаторов, трехфазных асинхронных и синхронных машин и машины постоянного тока;
- основные режимы работы электротехнического оборудования

уметь:

- составлять простые электрические схемы на монтажном и виртуальном рабочем столе;
- грамотно применять в своей работе электротехнические устройства и приборы.
- правильно использовать законы электротехнического анализа и расчёта возникающих задач при проектировании и эксплуатации простейших электрических систем и их устройств;
- определять простейшие неисправности и составлять спецификации.

владеть:

- базовыми навыками при работе с основными электротехническими приборами и оборудованием;
- базовыми приёмами расчёта простейших электрических схем
- навыками адекватной формулировки задач, решаемых методами излагаемыми в курсе;
- навыками применения средств и методов вычислительной техники.

4. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения изучения учебной дисциплины у обучающегося должны быть

сформированы компетенции и индикаторы их достижения:

	1 A									
Код и наименование	Код и наименование индикатора									
компетенций	достижения компетенций									
ОПК-3. Способен	ИД-10ПК-3 Применяет знания инженерных наук в области									
использовать знания	эксплуатации современного технологического оборудования,									
инженерных процессов	приборов используемых в производстве продукции из									
при решении	растительного сырья									
профессиональных задач	ИД-20ПК-3 Использует знания инженерных наук при									
и эксплуатации	проектировании предприятий пищевой промышленности									
современного	ИД-30ПК-3 Знает и имеет практические знания по процессам,									
технологического	протекающим в современном технологическом оборудовании									
оборудования и										
приборов										

В результате изучения учебной дисциплины обучающийся должен:

- основные разделы электротехники и электроники, роль и место дисциплины в современной технике и технологии; способы получения, преобразования и применения электроэнергии;
- основы физики явлений в электрических и магнитных цепях; методы расчета электрических и магнитных цепей в различных режимах; основные типы электрических машин и трансформаторов и области применения электронных приборов и устройств; принципы работы основных электрических машин и аппаратов, их рабочие и пусковые характеристики; физические основы электроники; компоненты электронной техники, схемотехнику аналоговых и цифровых устройств, архитектуру микропроцессорных систем.

уметь:

- моделировать и рассчитывать электрические и магнитные цепи электротехнических систем и электронных устройств; пользоваться инженерными прикладными пакетами компьютерных программ; пользоваться правилами безопасности при работе на электротехнических установках, а также при работе с электронными устройствами.

владеть:

- методами обработки результатов экспериментов; принципами создания физических моделей электротехнических и электронных устройств и их экспериментального исследования; навыками использования прикладных программ для моделирования электрических и магнитных цепей и электронных устройств, а также работы с вычислительной техникой для решения рассматриваемого круга задач.

5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Смысловой модуль 1. Анализ и расчёт цепей постоянного и переменного тока. Электромагнетизм.

Тема 1. Постоянный ток. Введение, общие сведения, терминология и понятия. Электрические цепи с одним источником питания, последовательное, параллельное и смешанное соединения активных и пассивных элементов. Свойства и области применения. Законы Ома, Кирхгофа. Расчёт и анализ сложных цепей постоянного тока при помощи прямого применения законов Кирхгофа, метода суперпозиции, узлового напряжения и метода контурных токов.

- **Тема 2. Переменный ток.** Общие понятия, термины, соотношения между различными определениями переменных величин. Цепи с активным, индуктивным и емкостным элементами. Последовательный и параллельный RLC контур. Векторный анализ цепей переменного тока. Треугольники токов, сопротивлений, напряжений, мощностей. Резонансные цепи. Понятие коэффициента мощности.
- **Тема 3. Магнитные цепи.** Законы магнитных цепей. Расчёт магнитной цепи. Прямая и обратная задача. Катушка со стальным сердечником в цепи переменного тока.
- **Тема 4. Трёхфазные цепи переменного тока.** Общие сведения о трёхфазных сетях. Генерирование трёхфазной э.д.с. Соединение генератора (трансформатора) звездой и треугольником. Соединение приёмников звездой и треугольником. Мощность трёхфазных цепей. Симметричные и несимметричные трёхфазные цепи.
- **Тема 5. Электрические измерения и приборы.** Современная измерительная база. Определение ошибок измерения. Конструктивные решения при конструировании и создании измерительных приборов. Измерения тока, напряжения, мощности и энергии, сопротивлений, частоты, неэлектрических величин.
- Смысловой модуль 2. Электрические машины и трансформаторы. Электрооборудование и электропривод.
- **Тема 6. Трансформаторы.** Назначение трансформаторов, их устройство и принцип действия. Холостой ход трансформатора. Векторная диаграмма. Работа трансформатора под нагрузкой. Векторная диаграмма. Приведенный трансформатор. К.п.д. и коэффициент мощности трансформатора. Внешняя характеристика. Трёхфазные трансформаторы, автотрансформаторы, специальные и измерительные трансформаторы.
- **Тема 7.** Электрические машины. Устройство и принцип работы асинхронной машины. Асинхронные двигатели с фазным и короткозамкнутым ротором. Эксплуатационные характеристики асинхронных машин. Понятие о работе асинхронной машины в режиме генератора, двигателя, электромагнитного тормоза, фазорегулятора, автотрансформатора. Пуск и регулирование скорости вращения двигателей. Синхронные машины, устройство и принцип работы. Двигатели постоянного тока, устройство и принцип работы. Способы возбуждения, области применения.
- **Тема 8.** Электрооборудование для автоматического и ручного управления в электрических цепях. Общие сведения. Коммутационные и защитные аппараты управления асинхронными двигателями. Схемы автоматического управления и защиты асинхронных двигателей. Регулирование скорости вращения. Схемы энергоснабжения на предприятиях пищевой и перерабатывающей промышленности.
- **Тема 9. Электрическое освещение.** Расчёт и проектирование электрического освещения на предприятиях пищевой и перерабатывающей промышленности, предприятиях торговли и ресторанного бизнеса.
- Смысловой модуль 3. Электроника и микропроцессорная техника.
- **Тема 10. Полупроводниковые приборы.** Общие сведения о полупроводниках. Диоды, тиристоры, транзисторы. Схемы подключения и питания. Выпрямители. Сетевые фильтры. Усилители тока, мощности. Частотные преобразователи.
- **Тема11. Микропроцессорная техника.** Общие сведения об архитектуре микропроцессора. Система команд микропроцессора. Логические элементы. Создание фрагмента микропроцессорной системы для поддержания заданного значения технологического параметра объекта.

6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

6. СТРУКТУРА УЧЕБНОИ ДИСЦИПЛИНЫ	Количество часов											
		Дневная форма обучения						Заочная форма обучения				
	в том числе						в том числе					
	_	1	2	-2	4	-: 5		,	2	-2	4	5
Названия смысловых модулей и тем	Всего	л ¹	π ²	лаб³	инд ⁴	CP ⁵	Всего	л1	Π ²	лаб ³	инд ⁴	CP ⁵
M 1	2	3	4	5		6	1	8	9	10		11
Модуль 1 Смысловой модуль 1. Анализ	и водиёт	папай	постоя	иного и	параман	пого то	rco					
Тема 1. Постоянный ток. Законы Ома, Кирхгофа. Анализ и расчёт цепей		ценеи	постоя	нного и	перемен	H010 10	Ka.				l	
постоянного тока. Последовательное, параллельное и смешанное												
соединения активных и пассивных элементов. Расчёт и анализ сложных												
цепей постоянного тока при помощи прямого применения законов	10	4	2	-		4	8,5	0,5	1	-		7
Кирхгофа, метода суперпозиции, узлового напряжения и метода												
кирхгофа, метода суперпозиции, узлового напряжения и метода контурных токов.												
Тема 2. Переменный ток. Общие понятия, термины, соотношения между												
различными определениями переменных величин. Последовательный и												
параллельный RLC контур. Векторный анализ цепей переменного тока.	8	2	2	-		4	8	0,5	0,5	-		7
Понятие коэффициента мощности.												
Тема 3. Магнитные цепи. Законы магнитных цепей. Расчёт магнитной												
цепи. Прямая и обратная задача. Катушка с стальным сердечником.	8	2	2	-		4	9	0,5	0,5	-		8
Тема 4. Трёхфазные цепи переменного тока. Общие сведения о												
трёхфазных сетях. Генерирование трёхфазной э.д.с. Соединение												
генератора (трансформатора) звездой и треугольником. Соединение	8	2	2	_		4	7,75	0,25	0,5	_		7
приёмников звездой и треугольником. Мощность трёхфазных цепей.							, -	-, -	-)-			
Симметричные и несимметричные трёхфазные цепи.												
Тема 5. Электрические измерения и приборы. Современная												
измерительная база. Определение ошибок измерения. Конструктивные												
решения при конструировании и создании измерительных приборов.	8	2	2	_		4	7,75	0,25	0,5	-		7
Измерения тока, напряжения, мощности и энергии, сопротивлений,							Í		-			
частоты, неэлектрических величин.												
Смысловой модуль 2. Электрические маши	ны и траі	нсформ	аторы	. Электр	ооборуд	ование і	и электро	привод				
Тема 6. Трансформаторы. Назначение трансформаторов, их устройство и												
принцип действия. Холостой ход трансформатора. Векторная диаграмма.												
Работа трансформатора под нагрузкой. Векторная диаграмма. К.п.д. и	12	4	4	-		4	7,75	0,25	0,5	-		7
коэффициент мощности трансформатора. Трёхфазные трансформаторы,												
автотрансформаторы, специальные и измерительные трансформаторы.												
Тема 7. Электрические машины. Устройство и принцип работы												
асинхронной машины. Асинхронные двигатели с фазным и	12	4	4	-		4	6,75	0,25	0,5	-		6
короткозамкнутым ротором. Эксплуатационные характеристики												

асинхронных машин. Пуск и регулирование скорости вращения двигателей.												
Тема 8. Электрооборудование для автоматического и ручного управления в электрических цепях. Общие сведения. Коммутационные и защитные аппараты управления асинхронными двигателями. Схемы автоматического управления и защиты асинхронных двигателей. Регулирование скорости вращения. Схемы энергоснабжения на предприятиях пищевой и перерабатывающей промышленности.	8	2	2	1		4	9,75	0,25	0,5	1		9
Тема 9. Электрическое освещение. Расчёт и проектирование электрического освещения на предприятиях пищевой и перерабатывающей промышленности, предприятиях торговли и ресторанного бизнеса.	8	2	2	ı		4	9,9	0,25	0,5	ı		9,15
Смысловой модуль 3. Электроника и микропроцессорная техника.												
Тема 10. Полупроводниковые приборы. Общие сведения о полупроводниках. Диоды, тиристоры, транзисторы. Схемы подключения и питания. Выпрямители. Сетевые фильтры. Усилители тока, мощности. Частотные преобразователи.		4	4	-		4,15	15	0,5	0,5	-		14
Тема 11. Микропроцессорная техника. Общие сведения об архитектуре микропроцессора. Система команд микропроцессора. Логические элементы. Создание фрагмента микропроцессорной системы для поддержания заданного значения технологического параметра объекта.	12	4	4	-		4	15	0,5	0,5	-		14
Катт ⁶	1,6	-	-	-	1,6	-	0,6	-	-	-	0,6	-
CPэк ⁷	-	-	-	-	-	-	-	-	-	-	-	-
КЭ8	-	-	-	-	-	-	-	-	-	-	-	-
Каттэк ⁹	0,25	-	-	-	0.25	-	0,25	-	-	-	0,25	-
Контроль ¹⁰	_	-	-	-	-	-	2	-	-	-	2	-
Всего часов	108	32	30	-	1,85	44,15	108	4	6	-	2,85	95,15

Примечания: 1. л – лекции; 2. п – практические (семинарские) занятия; 3. л – лабораторные занятия; 4. инд – индивидуальные консультации с педагогическими работниками; 5. СР – самостоятельная работа; 6. Катт – контактная работа на аттестацию в период обучения; 7. СРэк – самостоятельная работа в период промежуточной аттестации; 8. КЭ – консультации перед экзаменами; 9. Каттэк – контактная работа на аттестацию в период экзаменационной сессии; 10. Контроль – часы на проведение контрольных мероприятий.

7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Horron		Количе	ство часов	
Номер п/п	Название темы	очная форма	заочная форма	
1	Постоянный ток.	4	1	
2	Переменный ток.	2	0,5	
3	Магнитные цепи.	2	0,5	
4	Трёхфазные цепи переменного тока.	2	0,5	
5	Электрические измерения и приборы.	2	0,5	
6	Трансформаторы.	4	0,5	
7	Электрические машины.	4	0,5	
8	Электрооборудование для автоматического и ручного управления в электрических цепях.	2	0,5	
9	Электрическое освещение.	2	0,5	
10	Полупроводниковые приборы.	4	0,5	
11	Микропроцессорная техника.	4	0,5	
	Bcero	30	6	

8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ – не предусмотрены

No	Повромно жоли х		Количес	тво часов
п/п	Название темы	ОЧІ	ая форма	заочная форма
	Не предусмотрены учебным планом			

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

Howen		Количес	тво часов
Номер п/п	Название темы	очная форма	заочная форма
1	Постоянный ток.	4	7
2	Переменный ток.	4	7
3	Магнитные цепи.	4	8
4	Трёхфазные цепи переменного тока.	4	7
5	Электрические измерения и приборы.	4	7
6	Трансформаторы.	4	7
7	Электрические машины.	4	6
8	Электрооборудование для автоматического и ручного управления в электрических цепях.	4	9
9	Электрическое освещение.	4	9,85
10	Полупроводниковые приборы.	4,15	14
11	Микропроцессорная техника.	4	14
	Всего	44,15	95,85

10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Рабочая программа адаптирована для лиц с умеренными нарушениями функций зрения, слуха и речи.

В ходе реализации учебной дисциплины используются такие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- лекции и задания практикума оформляются в виде электронных документов, которые могут быть увеличены до удобного пользователю шрифта (для просмотра используются программы для чтения файлов *.pdf и *.doc, *.docx);
- письменные задания выполняются на компьютере со специализированным программным обеспечением или в тетради;
- для слабовидящих, при необходимости, предоставляется звукоусиливающая аппаратура индивидуального пользования; возможно также использование собственной звукоусиливающей аппаратуры индивидуального пользования;
- для слабослышащих, при необходимости, предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
- текущий модульный контроль осуществляется по результатам выполненного практикума и тестирования на компьютере;
- зачет является результатом набранных студентом на протяжении семестра баллов; при необходимости повышения баллов студент может ответить на дополнительные вопросы в письменном виде (не более 20 баллов);
 - при необходимости, предусматривается увеличение времени для подготовки ответа;
- процедура проведения зачета для обучающихся устанавливается с учетом их индивидуальных психофизических особенностей.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации.

11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ (выдают для студентов, находящихся на индивидуальном графике, а также студентов, желающих повысить балл)

К индивидуальным заданиям отнесено выполнение домашней контрольной работы и (или) расчетно-графической работы в соответствии с методическими указаниями для самостоятельной работы студентов, написание научных работ на конференции и др. виды работ по темам курса.

Индивидуальные задания отображают содержание дисциплины и соответствуют ее структуре (содержательным модулям и входящим в них темам, их логической последовательности).

Индивидуальные задания предполагают знание принципов, содержания, понятийного аппарата – глоссария дисциплины и, вместе с тем, использование эвристического потенциала мышления.

Индивидуальные задания имеют комплексный характер и включают в себя:

- теоретические вопросы,
- задачи;
- определения дефиниции базовых понятий с выделением их значения.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

Контрольная работа № I

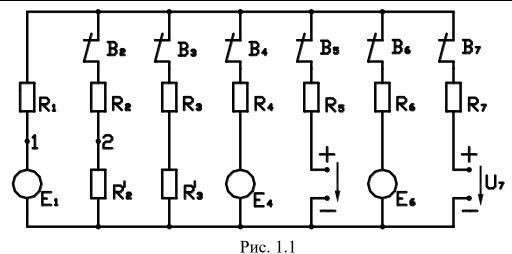

Задача І.І. Для электрической цепи постоянного тока (рис. І.І) определить токи $I_1 - I_7$ в ветвях резисторов $R_1 - R_7$, составить баланс мощностей, а также определить режим работы источников питания и напряжение U_{12} между точками І и2 цепи. Сопротивления результатов $R_1 - R_7$, ЭДС $E_1 - E_6$ и напряжения U_5 и U_7 источников питания приведены в табл. І.І. Положение выключателей $B_3 - B_8$ и метод решения указаны в табл. І.І, а.

Таблица I.I

Величины	Последняя цифра номера зачётной книжки												
В ЕЛИЧИНЫ	1	2	3	4	5	6	7	8	9	0			
$\mathbf{E}_{1},\mathbf{B}$	50	60	70	80	90	100	110	120	130	140			
E ₄ , B	90	80	60	50	40	140	150	110	100	90			
E ₆ , B	120	110	100	90	80	70	60	50	40	30			
U ₅ , B	10	20	30	40	30	30	20	60	50	40			
U ₇ , B	40	40	50	50	60	60	30	30	20	70			
R ₁ , O _M	1	1	2	2	3	3	2	2	1	1			
R ₄ , Ом	2	2	3	4	3	5	4	2	6	4			
R ₆ , Ом	1	2	3	7	6	4	5	3	2	2			
R ₂ , Ом	4	3	2	1	7	3	2	1	1	1			
R ¹ ₂ , O _M	10	9	8	6	5	2	7	6	5	4			
R ₃ , Ом	5	5	5	4	4	6	6	5	4	6			
R ¹ ₃ , O _M	1	2	3	4	5	6	7	8	9	10			
R ₅ , Ом	8	7	6	5	4	3	2	1	8	9			
R ₇ , Ом	10	10	9	9	8	8	6	6	5	5			

Таблица I.Ia

Первая буква фамилии	Выключатели разомкнуты	Метод решения задачи
А, Б, В, Г, Д, Е, Ж, З, И	B ₅ , B ₆ , B ₇ ,	Метод непосредственного применения законов Кирхгофа
К, Л, М, Н, О, П, Р, С, Т	$B_3, B_4, B_5,$	Метод контурных токов
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	B4, B5, B6	Метод узлового напряжения

Задача I.2. Электрическая цепь переменного синусоидального тока с частотой f=50 Γ ц (рис. I.2), находящаяся под действием напряжения U, содержит активные R_1-R_5 сопротивления, реактивные индуктивные $X_{\alpha\,2},\,X_{\alpha\,3},\,X_{\alpha\,6}$ и реактивные емкостные $X_{C1},\,X_{C4},\,X_{C7}$ сопротивления. По данным табл. I.2 с учётом положения выключателей B_1-B_7 (табл. I.2a) определить токи ветвей I_1-I_7 , проверить соблюдение баланса полных S,

активных P и реактивных Q мощностей, построить векторную диаграмму напряжений и токов.

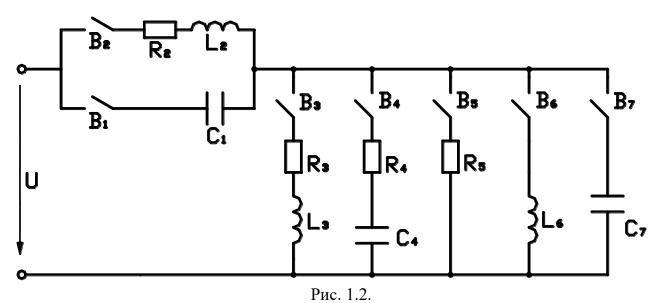

Задачу решить методом комплексных чисел.

Таблица I.2

Родиници	После	Последняя цифра номера зачётной книжки												
Величины	1	2	3	4	5	6	7	8	9	0				
U, B	100	110	120	130	140	150	150	160	170	180				
$\mathbf{U}\alpha$ 3, \mathbf{B}	20	30	40	50	60	70	80	90	10	70				
R ₁ , Ом	2	3	4	5	6	7	8	9	10	11				
R ₂ , Ом	4	5	4	5	4	5	4	5	4	5				
R ₃ , Ом	10	9	8	7	6	5	4	3	2	2				
R ₄ , Ом	12	13	14	15	16	17	18	19	20	22				
R 5, Ом	20	21	22	23	24	25	26	27	28	30				
Χ α 2, O M	4	4	4	4	4	4	4	4	4	4				
Хα 3, Ом	15	16	17	18	19	20	21	22	23	24				
Хα 6, Ом	20	30	40	50	60	70	80	90	100	110				
Хс1, Ом	3	4	5	3	4	5	3	4	5	6				
Хс4, Ом	8	9	10	7	12	14	16	17	18	19				
Хс7, Ом	20	24	26	28	30	12	14	16	24	26				

Таблица 1.2.а

Первая буква фамилии	Выключатели замкнуты			
А, Б, В, Г, Д, Е, Ж, З, И	B1, B4, B6			
К, Л, М, Н, О, П, Р, С, Т	B2, B3, B5			
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	B1, B2, B7			

Задача 1.3. В трехфазную сеть с симметричной системой линейных напряжений U включен симметричный потребитель электроэнергии, фазы которого имеют комплексные сопротивления: **Za=Zb=Zc** (рис. 1.3,a,б) и соединены «звездой» или

Zав=**Z**вс=**Z**са и соединены «треугольником». Принимая во внимание данные, приведённые в табл. 1.3 и табл. 1.3,а для каждого варианта задания определить линейные I и фазные I_{Φ} токи, активную P, реактивную Q и полную S мощности потребителя, показания ваттметров найти значения активных и реактивных сопротивлений фаз. Построить векторную диаграмму токов и напряжений на комплексной прямой.

Таблица 1.3

D	После,	Последняя цифра номера зачётной книжки								
Величины	1	2	3	4	5	6	7	8	9	0
U ,B	127	220	380	660	220	380	127	220	380	660
<u>Z</u> фаз, Ом	10	20	30	40	22	44	3+j4	2+j3	6+j8	5+j6

Таблица 1.3а

Первая буква фамилии	Схема соединения	Положение выкл. В
А, Б, Г, Д, Е, Ж, З, И	«звезда»	Замкнут
К, Л, М, Н, О, П, Р, С, Т	«треугольник»	Замкнут
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	«звезда»	Разомкнут



Рис. 1.3

Контрольная работа № 2

Задача 2.1. Потребители электрической энергии питаются от трехфазного двухобмоточного трансформатора с номинальной мощностью $S_{\text{ном}}$ при номинальном первичном $U_{1\ \text{ном}}$ и вторичном $U_{2\ \text{ном}}$ линейных напряжениях с номинальной частотой $f=50\ \Gamma$ ц.

Технические данные трансформатора: потери мощности при холостом ходе P_0 , потери мощности при коротком замыкании P_k , напряжение которого замыкания U_k % при токах в обмотках $I_{1 \text{ ном}}$ и $I_{2 \text{ ном}}$, равных номинальным. Способ соединения обмоток трансформатора «звезда». Принимая во внимание данные трансформатора, приведены в табл. 2.1, определить коэффициент трансформации k, коэффициент полезного действия η_{iii} при номинальной нагрузке, $\cos \varphi_2 = 0.8$, токи в первичной $I_{1 \text{ ном}}$ и во вторичной $I_{2 \text{ ном}}$ обмотках, фазные первичное $U_{1 \text{ 0}}$ и вторичное $U_{2 \text{ 0}}$ напряжения при холостом ходе, сопротивления короткого замыкания R_k и X_k , активные R_1 и R_2 и реактивные X_1 и X_2 сопротивления обмоток, активное U_{kR} и индуктивное U_{kL} падения напряжения при

коротком замыкании, вторичное напряжение U_2 при токе нагрузки I_2 =2 I_2 ном и $\cos \varphi_2$ =0,7. Построить зависимость $\Delta U_2\%(\cos \varphi_2)$ процентного изменения напряжения на вторичной обмотке трансформатора при номинальной нагрузке и изменении коэффициента мощности $\cos \varphi_2$.

Таблица 2.1

Последняя цифра зачётной книжки	S _{hom} , кВА	U _{1 ном} , В	U _{2 ном} , В	Первая буква фамилии	Р ₀ , Вт	P _k , Bt	U _k ,
1	10	6000	250	А, Б	200	100	2
2	20	6000	400	В, Г	300	200	3
3	30	8000	500	Д, Е, Ж	400	300	4
4	40	8000	600	3, И, К	500	50	5
5	50	9000	700	Л, М, Н	600	150	4,5
6	60	9000	800	О, П, Р	700	250	3,5
7	70	5000	500	С, Т, У	800	400	5,5
8	80	4000	400	Ф, Х, Ц	900	350	6
9	90	3000	300	Ч, Ш, Щ	600	500	5,5
0	100	2000	200	Э, Ю, Я	400	600	5

Задача 2.2 Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет номинальные данные, указанные в табл. 2.2., табл. 2.2а. Номинальные: линейное напряжение питающей сети $U_{1\text{ ном}}$, частота питающего тока f=50 Γ ц, мощность на валу $P_{2\text{ ном}}$, синхронная частота вращения магнитного поля η_{1} , скольжение ротора $S_{\text{ном}}$, КПД $\eta_{i\hat{n}}$, коэффициент мощности $\cos\varphi_{\text{ ном}}$, отношение $m_{i}=I_{\text{пуск}}$ / $I_{\text{ном}}$ — начального пускового $I_{\text{пуск}}$ к номинальному току $I_{\text{ном}}$, отношение начального пускового момента $M_{\text{пуск}}$ к номинальному моменту на валу $M_{\text{ном}}$: $m_{i\hat{n}\hat{e}}=\frac{\dot{I}_{i\hat{n}\hat{e}}}{\dot{I}_{i\hat{n}\hat{i}}}$, отношение $m_{kp}=\frac{\dot{I}_{i\hat{n}}}{\dot{I}_{i\hat{n}\hat{i}}}$ минимального к номинальному моменту, отношение $m_{kp}=\frac{\dot{I}_{i\hat{n}}}{\dot{I}_{i\hat{n}\hat{i}}}$ максимального момента к номинальному моменту.

Определить номинальный $M_{\text{ном}}$, начальный пусковой $M_{\text{пуск}}$ и максимальный $M_{\text{мах}}$ моменты, номинальный $I_{1\text{ ном}}$ и начальный пусковой $I_{1\text{ пуск}}$ токи, частоту тока в роторе $f_{2\text{ ном}}$ при номинальной нагрузке и в момент пуска $f_{2\text{ пуск}}$, число пар полюсов обмотки статора P, синхронную угловую частоту вращения магнитного поля Ω_{1} , а также угловую частоту вращения ротора $\Omega_{2\text{ }iii}$ и мощность на зажимах двигателя $P_{1\text{ ном}}$ при номинальном режиме работы.

Определить максимальный момент $M_{\text{мах}}$ двигателя при напряжении питающей сети, равном U_1 = 0,9 $U_{\text{ном}}$. Построить механическую характеристику M(S) двигателя по точкам, соответствующим скольжения ротора S=0; S=1; S_{kp} ; $S_{\text{ном}}$; S=0,4; 0,6; 0,8.

Таблица 2.2

Последняя		Технические данные электродвигателя				
цифра зачетной книжки	U _{1 ном} , В	Р _{2 ном} , кВт	n ₁ , об/мин	S _{HOM} , %	$\eta_{_{ ilde{t}\hat{t}\hat{t}}}$,	$\cosarphi_{\hat{\imath}\hat{\imath}\hat{\imath}}$
1	220	0,18	1500	8,9	0,64	0,64
2	380	0,25	1500	8,0	0,68	0,65
3	220	0,37	1500	9,0	0,68	0,69
4	380	0,55	1500	7,3	0,70	0,70
5	660	0,75	1500	7,5	0,72	0,73
6	220	1,1	1500	5,4	0,75	0,81
7	380	22	3000	2,0	0,9	0,9
8	660	30	1500	1,9	0,9	0,85
9	220	37	3000	1,7	0,91	0,9
0	380	45	3000	1,6	0,93	0,9

Таблица 2.2а

Попола бууга фамилии	Коэффициенты				
Первая буква фамилии	m_i	$m_{\rm пуск}$	m_{\min}	m_{kp}	
А, Б, В, Г, Д, Е, Ж, З, И	5	1,2	1,1	2,0	
К, Л, М, Н, О, П, Р, С, Т	6	1,5	1,3	2,5	
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	7	1,8	1,5	3,0	

Задача 2.3. Электродвигатель постоянного тока параллельного возбуждения характеризуется номинальными данными (см. табл. 2.3): напряжение питающей сети $U_{\text{ном}}$, мощность на валу $P_{\text{ном}}$, частота вращения якоря $n_{\text{ном}}$, ток $I_{\text{ном}}$. Сопротивление цепи якоря двигателя R_s =0,05 $U_{\text{ном}}$ / $I_{\text{ном}}$ Ом. При расчетах током возбуждения I_{ℓ} электродвигателя пренебречь. Определить КПД двигателя при номинальной нагрузке, реостата, сопротивление $R_{\text{пуск}}$ пускового ограничивающего электродвигателя до значения $I_{\text{пуск}} = a \cdot I_{\text{ном}}$, а также добавочное сопротивление R в цепи якоря, при котором двигатель в режиме противовключения при моменте нагрузки, равном в М_{ном}, развивает частоту вращения с п_{ном}. Рассчитать и построить в единой системе координат искусственную и естественную механические характеристики п (М) и зависимость тока от момента электродвигателя I (M) в пределах нагрузки от M=2 $M_{\text{ном}}$, до $M = -2 M_{\text{ном}}$.

Коэффициенты a, e, c приведены в табл. 2.3a.

Таблица 2.3а

Попрод бумого формули	Коэффициенты				
Первая буква фамилии	a	в	c		
А, Б, В, Г, Д, Е, Ж, З, И	1,1	0,9	0,5		
К, Л, М, Н, О, П, Р, С, Т	1,2	1,4	0,8		
У, Ф, Х, Ц, Ч, Ш, Д, Э, Ю, Я	1,3	0,5	0,5		

Таблица 2.3

	Номинальные данные двигателя					
Последняя цифра зачётной книжки	U _{1 ном} , В	Р _{ном} , кВт	п _{ном} , об/мин	I _{ном} , А		
1	110	2,0	1000	23		
2	220	2,5	1100	14		
3	220	3,5	1200	21		
4	110	5,0	1300	57		
5	220	6,5	900	37		
6	380	8,0	800	27		
7	220	9,0	60	36		
8	110	10,0	500	12		
9	380	12,0	550	40		
0	220	14,0	450	80		

Контрольная работа № 3

Задача 3.1. Трехфазные асинхронные электродвигатели используются для привода механизма с циклическим графиком момента нагрузки, приведённым к его валу. Используя данные, приведены в табл. 3.1 и табл. 3.1а для соответствующего варианта задания, определить расчётную мощность P_p и выбрать по катологу по условиям нагрева электродвигатель и произвести проверку на его перегрузочную способность. В табл. 3.1 и табл. 3.1a: $M_1,\ M_2,\ M_3$ — моменты нагрузки на валу двигателя, соответствующие участкам нагрузочного графика; $t_1,\ t_2,\ t_3$ — время работы двигателя с заданными моментами нагрузки; t_0 — время паузы (интервалы между циклами работы); n — частота вращения двигателя; K_U — коэффициент, учитывающий возможное снижение питающей сети.

Определить энергию W, потребляемую из питающей сети за время цикла работы двигателя; построить нагрузочный график M (t).

Таблица 3.1

Таолица 3.1	3.5	3.5	3.5		
Последняя цифра зачётной книжки	M_1 ,	M_2 ,	M_3 ,	n,	$\mathbf{K}_{\mathbf{U}}$
	Н∙м	Н∙м	Н∙м	об/мин	140
1	10	50	30	735	0.9
2	10	45	35	935	0.95
3	10	40	40	735	0.9
4	15	50	25	935	0.95
5	15	55	40	735	0.9
6	20	55	45	935	0.95
7	25	30	10	935	0.95
8	35	45	15	735	0.9
9	40	65	20	735	0.9
0	45	80	5	935	0.95

Таблица 3.1а

Первая буква фамилии	t ₁ ,	t ₂ ,	t ₃ ,	t ₀ ,
А, Б, В, Г, Д, Е, Ж, З, И	5	10	15	10
К, Л, М, Н, О, П, Р, С, Т	10	15	20	15
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	15	20	25	20

Задача 3.2. Составить схему однокаскадного низкочастотного усилителя и рассчитать коэффициент усиления по току K, напряжению K_U и мощности K_p , а также входное $R_{\rm ex}$ и выходное сопротивления для заданного варианта схемы включения транзистора по его h — параметрам для рабочей точки. Величины сопротивления $R_{\rm H}$ нагрузки и внутреннего сопротивления генератора сигналов $R_{\rm r}$ приведены для соответствующего варианта в табл. 3.2, табл. 3.2а.

Таблица 3.2

Последня я цифра зачётной книжки	Тип транзист ора	Схема включения	h ₁₁ , Ом	h ₁₂ , Ом	h ₂₁ , Ом	h ₂₂ , Ом
1	П14	ОК	775	1	25	$20 \cdot 10^{-6}$
2	ГТ332А	ОБ	5,79	$0,202 \cdot 10^{-3}$	-0,98	$1,1\cdot 10^{-6}$
3	ГТ332А	ОЭ	330	$1,6\cdot 10^{-4}$	56	$62,5\cdot 10^{-6}$
4	ГТ332А	ОК	331	1	-57	$1,1\cdot 10^{-6}$
5	П416	ОБ	15,8	$-30,6\cdot10^{-3}$	-0,97	$3,7 \cdot 10^{-6}$
6	П416	ОЭ	650	$32 \cdot 10^{-3}$	40	$1,5 \cdot 10^{-4}$
7	П416	ОК	632	1	-40	$2,5\cdot 10^{-4}$
8	П14	ОБ	31	$3,2\cdot 10^{-4}$	-0,96	$0.8 \cdot 10^{-6}$
9	П14	ОЭ	775	$3 \cdot 10^{-4}$	24	$20 \cdot 10^{-6}$
0	П14	ОК	775	1	-25	18·10 ⁻⁶

Таблица 3.2а

	Сопротивления			
Первая буква фамилии	R _н , кОм	R _r ,		
	кОм	кОм		
А, Б, В, Г, Д, Е, Ж, З, И	2	6		
К, Л, М, Н, О, П, Р, С, Т	8	10		
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	3	20		

12. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗУСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства детализируются по видам работ в оценочных материалах по учебной дисциплине, которые утверждаются на заседании кафедры.

Система оценивания по учебной дисциплине по очной форме обучения*

Форма контроля	Макс. количество баллов				
	За одну работу	Всего			
Текущий контроль:					
- собеседование (темы 111)	4	44			
- тестирование (темы 111)	4	44			
- реферат	12	12			
Промежуточная аттестация	Зачет	100			
Итого за семестр	100				

^{*} в соответствии с утвержденными оценочными материалами по учебной дисциплине

Система оценивания по учебной дисциплине на заочной форме обучения

Форма контроля	Макс. количество баллов						
	За одну работу	Всего					
Текущий контроль:							
- дискуссия, собеседование	4	44					
- тестирование	8	32					
- контрольная работа	8	24					
Промежуточная аттестация	Зачет	100					
Итого за семестр	100						

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ТЕКУЩЕМУ МОДУЛЬНОМУ КОНТРОЛЮ

- 1. Электрическая энергия, её особенности и области применения. Значение электрификации
- в развитии технической базы.
- 2. Основные понятия об электрических цепях.
- 3. Условные положительные направления токов, э. д. с. и напряжений.
- 4. Электрические цепи с одним источником питания.
- 5. Режимы работы электрических цепей.
- 6. Расчёт сложных электрических цепей постоянного тока при помощи законов Кирхгофа.
- 7. Метод контурных токов.
- 8. Основные понятия и получение синусоидального тока.
- 9. Действующие и средние значения синусоидальных э. д. с., напряжений и токов.
- 10. Векторные диаграммы.
- 11. Комплексный метод расчёта цепей переменного тока.
- 12. Законы Кирхгофа для цепей синусоидального тока.
- 13. Электрическая цепь синусоидального тока с активным сопротивлением.
- 14. Электрическая цепь синусоидального тока с индуктивностью.
- 15. Электрическая цепь синусоидального тока с ёмкостью.
- 16. Последовательное соединение элементов R, L, и C.
- 17. Мощность цепи синусоидального тока с элементами R, L, и C.
- 18. Параллельное соединение элементов R, L, и C.
- 19. Резонансные явления, условия возникновения и практическое значение.
- 20. Повышение коэффициента мощности.
- 21. Понятие о трёхфазной системе э. д. с. и её получение.
- 22. Трёхфазные цепи с симметричными пассивными приёмниками:
 - а) соединение звездой;
 - б) соединение треугольником.
- 23. Трёхфазные цепи с несимметричными пассивными приёмниками:
 - а) соединение звездой;
 - б) соединение треугольником.
- 24. Мощность трёхфазной цепи.
- 25. Магнитные цепи переменных магнитных потоков.
- 26. Особенности электромагнитных процессов в катушке с магнитопроводом.
- 27. Магнитные потери энергии.
- 28. График мгновенных значений магнитного потока и тока при синусоидальном напряжении.
- 29. Значение электрических измерений на современном этапе НТР. Основные понятия об электроизмерительных приборах.
- 30. Магнитоэлектрические приборы.
- 31. Электромагнитные приборы.

- 32. Электродинамические и ферродинамические приборы.
- 33. Счётчики электрической энергии (индукционные приборы).
- 34. Измерение токов, напряжений, сопротивлений.
- 35. Измерение мощности и энергии.
- 36. Устройство и принцип действия трансформатора.
- 37. Холостой ход трансформатора.
- 38. Нагрузочный режим работы трансформатора.
- 39. Приведенный трансформатор.
- 40. Внешняя характеристика трансформатора.
- 41. К. п. д. трансформатора.
- 42. Трёхфазные трансформаторы.
- 43. Специальные трансформаторы (измерительные).
- 44. Автотрансформаторы.
- 45. Устройство и принцип действия трёхфазного асинхронного двигателя.
- 46. Активная мощность и к. п. д. асинхронного двигателя.
- 47. Электромагнитный момент асинхронного двигателя.
- 48. Пуск асинхронных двигателей и их механические характеристики.
- 49. Регулирование частоты вращения асинхронных двигателей.
- 50. Основные понятия об электронных устройствах.
- 51. Полупроводниковый диод.
- 52. Полупроводниковый триод (транзистор).
- 53. Тиристор.
- 54. Интегральные микросхемы и миниатюризация приборов и устройств современной электроники.
- 55. Выпрямители, сглаживающие фильтры.
- 56. Общие понятия об электронных усилителях.
- 57. Транзисторные усилители.

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТУ

- 1. Закон Ома. Уравнения электрического состояния цепи.
- 1.1 Формулировка и математическая запись закона Ома для участка цепи.
- 1.2. Формулировка и математическая запись закона Ома для полной цепи.
- 1.3. Формулировка и математическая запись первого закона Кирхгофа для цепей постоянного тока.
- 1.4. Формулировка и математическая запись второго закона Кирхгофа для цепей постоянного тока.
- 1.5. Физическая причина появления сопротивления у металлов и формула зависимости удельного сопротивления металлов от температуры.
- 1.6. Понятие ЭДС, напряжения, падения напряжения. Основные формулы, определения, единиц измерения.
- 1.7. Работа и мощность электрического тока.
- 2. Режимы работы электрической цепи.
- 3. Последовательное соединение активных и пассивных элементов
- 4. Законы Кирхгофа. Параллельное соединение пассивных элементов.
- 5. Преобразование треугольника сопротивлений в эквивалентную звезду сопротивлений и обратное преобразование.
- 6. Метод расчёта эл. цепей с применением законов Кирхгофа.
- 7. Метод узлового напряжения.
- 8. Применение метода наложения при расчёте эл.цепей
- 9. Метод контурных токов при расчёте эл.цепей.
- 10. Основные понятия и способы получения синусоидального тока. Определения переменных электрических величин.
- 11. Получение однофазного переменного тока. Векторная диаграмма.

- 12. Среднее и действующее значение переменного тока.
- 13. Цепь переменного тока с активным сопротивлением.
- 14. Цепь переменного тока с индуктивностью.
- 15. Цепь переменного тока с ёмкостью.
- 16. Цепь с последовательным соединением активного сопротивления, ёмкости и индуктивности.
- 17. Треугольники напряжений, сопротивлений, мощностей.
- 18. Разветвлённые цепи переменного тока. Параллельное соединение сопротивлений.
- 19. Резонанс токов.
- 20. Резонанс напряжений.
- 21. Графический метод расчёта цепей переменного тока. Метод проводимостей.
- 22. Получение трёхфазного тока.
- 23. Симметричная трёхфазная система э.д.с. Связанная трёхфазная система.
- 24. Соединение обмоток генератора (трансформатора) и приёмника звездой и треугольником.
- 25. Симметричная нагрузка в трёхфазной сети. Фазные и линейные э.д.с., напряжения и токи при симметричной нагрузке.
- 26. Мощность симметричной трёхфазной цепи.
- 27. Магнитные цепи электротехнических устройств. Основные понятия.
- 28. Магнитная цепь. Типы магнитных цепей. Магнитные материалы и их свойства. Электромагнитные устройства.
- 29. Термины и определения измерительной техники. Классификация электроизмерительных приборов
- 30. Измерительные механизмы магнитоэлектрической системы
- 31. Измерительные механизмы электромагнитной, электродинамической и ферродинамической систем
- 32. Измерительные механизмы индукционной и вибрационной систем.
- 33. Методы измерения напряжений, токов, сопротивлений, мощности, эл. энергии.
- 34. Устройства для расширения пределов измерения приборов
- 35. Конструкция и принцип работы трансформатора.
- 36. Холостой ход трансформатора. Работа трансформатора под нагрузкой
- 37. Приведенный трансформатор. Внешняя характеристика трансформатора
- 38. Потери и к.п.д. трансформатора.
- 39. Автотрансформатор.
- 40. Измерительные и специальные трансформаторы.
- 41. Классификация электрических машин.
- 42. Асинхронные машины.
- 43. Устройство трёхфазного асинхронного двигателя.
- 44. Принцип образования вращающегося магнитного поля.
- 45. Принцип действия трёхфазного асинхронного двигателя. Э.д.с. статора и ротора.
- 46. Векторная диаграмма асинхронного двигателя.
- 47. Схема замещения асинхронного двигателя.
- 48. Энергетическая диаграмма асинхронного двигателя.
- 49. Вращающий момент асинхронного двигателя.
- 50. Механическая характеристика асинхронного двигателя.
- 51. К.п.д. и коэффициент мощности асинхронного двигателя.
- 52. Способы пуска асинхронных двигателей.
- 53. Выбор типа двигателя. Выбор мощности двигателя для различных режимов работы.
- 54. Продолжительный режим работы двигателей с постоянной нагрузкой
- 55. Продолжительный режим работы двигателей с переменной нагрузкой
- 56. Методы среднеквадратичных значений тока, момента, мощности.
- 57. Выбор мощности двигателя для кратковременного режима.
- 58. Выбор мощности двигателя для повторно- кратковременного режима.

- 59. Электроника, её значение в машиностроении отрасли.
- 60. Диоды, характеристики и параметры, принцип действия.
- 61. Транзистор, устройство, принцип действия, схемы включения.
- 62. Статические характеристики и параметры полупроводниковых триодов.
- 63. Тиристор, принцип действия, семы включения.
- 64. Выпрямители, электрические схемы и принцип действия.
- 65. Блок- схема выпрямителя. Однополупериодный выпрямитель.
- 66. Двухполупериодный выпрямитель.
- 67. Мостовой двухполупериодный выпрямитель.
- 68. Трёхфазный выпрямитель.
- 69. Сглаживающие фильтры, принцип работы и электрические схемы.

13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Зачёт

Текущее тестирование и самостоятельная работа									Сумма		
	Смысл	іовой м	одуль 1		См	ыслово	й моду.	ль 2	Смы	словой	в балах
						модуль 3					
Тема1	Тема 2	Тема 3	Гема 4	Тема 5	Тема 6	Тема 7	Тема8	Тема9	Гема 10	Тема 11	
5	5	5	5	10	10	10	10	10	15	15	100
30			40								

Примечание: Т1, Т2, ..., Т11 – номера тем смысловых модулей.

Соответствие государственной шкалы оценивания академической успеваемости

Сумма баллов за все виды учебной деятельности	По государственной шкале	Определение			
60-100	«Зачтено»	обучающийся освоил учебный материал всех разделов дисциплины, овладел необходимыми умениями и навыками при выполнении практических заданий			
0-59	«Не зачтено»	обучающийся не освоил учебный материал всех разделов дисциплины, практики не овладел необходимыми умениями и навыками при выполнении практических заданий (возможность повторной аттестации)			

14. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная:

- 1. Электротехника и электроника [Электронный ресурс] : учеб. пособие / М. Ю. Еремин [и др.]. Воронеж : Воронежский ГАУ, 2018 . Локал. компьютер сеть НБ ДонНУЭТ.
- 2. Сивяков, Б. К. Электротехника [Электронный ресурс] : учебное пособие / Б. К. Сивяков, Д. Б. Сивяков ; Министерство образования и науки Российской Федерации (РФ), Саратовский государственный технический университет им. Гагарина Ю. А. Саратов : КУБиК, 2018 . Локал. компьютер сеть НБ ДонНУЭТ
- 3. Соколов, С. А. Электротехника, электроника и микропроцессорная техника [Электронный ресурс] : конспект лекций для студентов направления 15.03.02

"Машиностроение" Технол. машины и оборуд. (профиль "Оборуд. перераб. и пищ. прв"), оч. и заоч. форм обучения / С. А. Соколов; М-во образования и науки ДНР, ГОВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. общеинженерных дисциплин. — Донецк: ДонНУЭТ, 2017. — Локал. компьютер. сеть НБ ГОВПО "ДонНУЭТ".

Дополнительная:

- 1. Электротехника [Электронный ресурс] : практикум ; Хотунцев Ю. Л. [и др.] . Москва : МПГУ, 2020 . 204 с. ISBN 978-5-4263-0898-5 Локал. компьютер сеть НБ ДонНУЭТ
- 2. Гуков П.О. Г939 Теоретические основы электротехники: учебное пособие / П.О. Гуков, Р.М. Панов, С.А. Филонов. Воронеж: ФГБОУ ВО Воронежский ГАУ, 2019. 125 с Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=37249748
- 3. Зайцева И.Н. Электротехника. Линейные цепи постоянного тока: лабораторный практикум. / И.Н. Зайцева, Н.А. Фортунова, С.С. Токарева, Н.А. Ярлыкова Елец: «Елецкий государственный университет им. И.А. Бунина, 2019. 80 с. Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=41383747
- 4. Скрипник, И. Л. Электротехника и электроника. Ч. 1 Электротехника [Электронный ресурс] : учебное пособие / И. Л. Скрипник, С. В. Воронин . СПб., 2017 . Локал. компьютер сеть НБ ДонНУЭТ.
- 5. Воронин, С. В. Электротехника и электроника. Ч. 2 Электроника [Электронный ресурс] : учебное пособие / С. В. Воронин, И. Л. Скрипник . СПб., 2017 . Локал. компьютер сеть НБ ДонНУЭТ
- 6. Баксанский О.Е. Краткий исторический очерк развития электротехники / О.Е. Баксанский, С.Э. Демидов. М.: РАН, 2017 38 с. Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=32868622
- 7. Абубакиров К. М. А13 Электротехника и электроника: Практикум. Екатеринбург: Изд-во УГГУ, 2010. 95 с. ISBN 978-5-8019-0229-6 Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=26669924

Электронные ресурсы:

- 1. Соколов С.А. Электротехника и электроника [Электронный ресурс]: дистанционный курс / С.А. Соколов Электрон. текстовые данные. Донецк: ГО ВПО «ДОННУЭТ», 2019. Режим доступа: https://distant.donnuet.education/course/view.php?id=4337
- 2. Соколов, С. А. Электротехника, электроника и микропроцессорная техника [Электронный ресурс] : конспект лекций для студентов направления 15.03.02 "Машиностроение" Технол. машины и оборуд. (профиль "Оборуд. перераб. и пищ. прв"), оч. и заоч. форм обучения / С. А. Соколов ; М-во образования и науки ДНР, ГОВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. общеинженерных дисциплин . Донецк : ДонНУЭТ, 2017 . Локал. компьютер. сеть НБ ГОВПО "ДонНУЭТ"

15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

1. Автоматизированная библиотечная информационная система UNILIB [Электронный ресурс] — Версия 1.100. — Электрон. дан. — [Донецк, 1999-]. — Локал. сеть Науч. б-ки ГО ВПО Донец. нац. ун-та экономики и торговли им. М. Туган-Барановского. — Систем.

требования: ПК с процессором ; Windows ; транспорт. протоколы TCP/IP и IPX/SPX в ред. Microsoft ; мышь. – Загл. с экрана.

- 2. IPRbooks: Электронно-библиотечная система [Электронный ресурс] : [«АЙ Пи Эр Медиа»] / [ООО «Ай Пи Эр Медиа»]. Электрон. текстовые, табл. и граф. дан. Саратов, [2018]. Режим доступа: http://www.iprbookshop.ru. Загл. с экрана.
- 3. Elibrary.ru [Электронный ресурс] : науч. электрон. б-ка / ООО Науч. электрон. б-ка. Электрон. текстовые. и табл. дан. [Москва] : ООО Науч. электрон. б-ка., 2000- .– Режим доступа : https://elibrary.ru. Загл. с экрана.
- 4. Научная электронная библиотека «КиберЛенинка» [Электронный ресурс] / [ООО «Итеос»; Е. Кисляк, Д. Семячкин, М. Сергеев]. Электрон. текстовые дан. [Москва: ООО «Итеос», 2012-]. Режим доступа: http://cyberleninka.ru. Загл. с экрана.
- 5. Национальная Электронная Библиотека.
- 6. «Полпред Справочники» [Электронный ресурс] : электрон. б-ка / [База данных экономики и права]. Электрон. текстовые дан. [Москва : ООО «Полпред Справочники», 2010-]. Режим доступа : https://polpred.com. Загл. с экрана.
- 7. Book on lime : Электронно-библиотечная система [Электронный ресурс] : ООО «Книжный дом университета». Электрон. текстовые дан. Москва, 2017. Режим доступа : https://bookonlime.ru.— Загл. с экрана.
- 8. Университетская библиотека ONLINE : Электронно-библиотечная система [Электронный ресурс] : ООО «Директ-Медиа». Электрон. текстовые дан. [Москва], 2001. Режим доступа : https://biblioclub.ru. Загл. с экрана.
- 9. Бизнес+Закон [Электронный ресурс] : Агрегатор правовой информации / [Информационно-правовая платформа]. Электрон. текстовые дан. [Донецк, 2020-]. Режим доступа : https://bz-plus.ru. Загл. с экрана.
- 10. Электронный каталог Научной библиотеки Донецкого национального университета экономики и торговли имени Михаила Туган-Барановского [Электронный ресурс] / НБ ДонНУЭТ. Электрон. дан. [Донецк, 1999-]. Режим доступа: http://catalog.donnuet.education Загл. с экрана.

16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Для проведения лекционных занятий используется демонстрационное оборудование.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети интернет и обеспечением доступа в электронную информационно-образовательную среду организации.

Наименование помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом, в том числе помещения для самостоятельной работы, с указанием перечня основного оборудования, учебно-наглядных пособий и используемого программного обеспечения	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
1. Учебная аудитория для проведения лекций - №3131 (24 посадочных	1. Донецкая Народная
места) Учебная лаборатория «Электротехника»: учебная мебель, доска,	Республика,
переносная кафедра лектора, универсальные учебно-лабораторные	г. Донецк,
стенды для испытания цепей постоянного и переменного трех и одно	пр. Театральный, дом
фазного тока, контрольно-измерительные приборы; универсальные	28

стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине.

2. Учебные аудитории для проведения практических и лабораторных занятий:

№3131 (24 посадочных места) Учебная лаборатория «Электротехника»: учебная мебель, доска, переносная кафедра лектора, универсальные учебно-лабораторные стенды для испытания цепей постоянного и переменного трех и одно фазного тока, контрольно-измерительные приборы; универсальные стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине;

№3003в: учебная мебель, доска, переносная кафедра лектора, стенд для проведения исследований и испытаний двигателей постоянного и переменного тока, универсальный стенд для проведения лабораторных испытаний.

- 3. Учебная аудитория для проведения консультаций и экзамена №3131 (24 посадочных места) Учебная лаборатория «Электротехника»: учебная мебель, доска, переносная кафедра лектора, универсальные учебно-лабораторные стенды для испытания цепей постоянного и переменного трех и одно фазного тока, контрольно-измерительные приборы; универсальные стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине.
- 4. Читальные залы библиотеки №7301 для проведения самостоятельной работы: мебель, компьютеры с выходом в сеть Интернет, доступ к электронно-библиотечной системе, операционная система Microsoft Windows XP Professional OEM (2005 г.); Microsoft Office 2003 Standard Academic от 14.09.2005 г.; Adobe Acrobat Reader (бесплатная версия); 360 Total Security (бесплатная версия); АБИС "UniLib" (2003 г.)

- 2. Донецкая Народная Республика,
- г. Донецк,
- пр. Театральный, дом 28

- 3. Донецкая Народная Республика, г. Донецк, пр. Театральный, дом 28
- 4. Донецкая Народная Республика, г. Донецк, пр. Театральный, дом 28

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

	Turigit oboli of	DECITE IEII	HE V IEDITOH,	дисциплины
№ п/п	Ф.И.О. педагогического (научно-педагогического) работника, участвующего в реализации образовательной программы	Должность, ученая степень, ученое звание	Уровень образования, наименование специальности, направления подготовки, наименование присвоенной квалификации	Сведения о дополнительном профессиональном образовании 7
			, , ,	1
1	Соколов Сергей Анатольевич	Должность - зав. кафедрой общеинже- нерных дисциплин; ученая степень — доктор технических наук; ученое звание — профессор	Среднее профессиональное; Электрические станции, сети и системы; Техник-электрик Высшее — специалитет; Машины и аппараты пищевых производств; Инженер-механик Диплом доктора технических наук ДД №002608	организации учебного процесса при подготовке инженернно-технических работников», 72 часа, ФГБОУ ВО "Керченский государственный морской технологический университет", г. Керчь. 2. Свидетельство о прохождении стажировки №2229/1, с 29.02.2024 по 02.03.2024. «Интеллектуальная собственность в

1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование показателя	Наименование укрупненной группы /		гика учебной плины		
	Направление подготовки / Профиль / Программа высшего образования	очная форма обучения	заочная форма обучения		
Количество зачетных единиц – 3 Модулей – 1	Укрупненная группа направлений подготовки 19.00.00 Промышленная экология и биотехнология	Обязательная часть			
Смысловых модулей – 3	Направление подготовки 19.03.02 Продукты питания				
Индивидуальные научно-	<u>из растительного сырья</u>		готовки:		
исследовательские задания:		2- й	3-й		
углубленное изучение			естр		
отдельных вопросов по электротехнике и электронике.		4-й			
Общее количество часов – 108		Лек	сции		
		32 час.	4 час.		
Количество часов в неделю для очной формы обучения:	Профиль	Практические, семинарские занятия			
аудиторных – 4;	<u>Технология мучных и</u> кондитерских изделий	30 час.	6 час.		
самостоятельной работы	коноитерских изоелии	Лабораторі	ные занятия		
обучающегося – 3		-	-		
		Самостояте.	льная работа		
		44,15 час.	95,15 час.		
	Образовательная программа		ьные задания		
	высшего образования –		ов (ауд.):		
	бакалавриат	1,85 час.	2,85 час.		
	ounanaopuani	Форма промежуточной			
			гации:		
		,	т с оценкой,		
			мен)		
		3a	чёт		

Соотношение количества часов аудиторных занятий и самостоятельной работы составляет: для очной формы обучения — 62/46 для заочной формы обучения — 10/98

2. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: формирование у студентов теоретических знаний физических основ функционирования современных элементов электрических устройств, принципов работы электроустановок и их характеристик, электронных схем и функциональных узлов аналоговой и цифровой электроники и микроэлектроники, а также, практических навыков в области физического эксперимента по изучению их характеристик.

Задачи учебной дисциплины: подготовка студентов к самостоятельному проведению технического обслуживания электроустановок и электрооборудования в отрасли, теоретическая и практическая подготовка инженеров неэлектротехнических специальностей в области электротехники и электроники в такой мере, чтобы они могли выбирать необходимые электрические, электронные и микропроцессорные устройства и оснастку, уметь их правильно и рационально эксплуатировать и составлять технические задания инженерам-электрикам на разработку электрических частей автоматизированных устройств для управления технологическими производственными процессами.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина <u>Б1.О.18 Электротехника и электроника</u> относится к обязательной части ОПОП.

Обеспечивающие дисциплины: «Физика», «Высшая математика», «Инженерная графика», «Компьютерная графика»

Обеспечиваемые дисциплины: «Проектирование предприятий пищевой промышленности», «Оборудование предприятий отрасли (мясо-молочная и рыбная)»

Перед изучением дисциплины студент должен:

знать:

- основные законы электротехники для электрических и магнитных цепей;
- методы измерения электрических и магнитных величин;
- устройство и принцип работы трансформаторов, трехфазных асинхронных и синхронных машин и машины постоянного тока;
- основные режимы работы электротехнического оборудования

уметь:

- составлять простые электрические схемы на монтажном и виртуальном рабочем столе;
- грамотно применять в своей работе электротехнические устройства и приборы.
- правильно использовать законы электротехнического анализа и расчёта возникающих задач при проектировании и эксплуатации простейших электрических систем и их устройств;
- определять простейшие неисправности и составлять спецификации.

владеть:

- базовыми навыками при работе с основными электротехническими приборами и оборудованием;
- базовыми приёмами расчёта простейших электрических схем
- навыками адекватной формулировки задач, решаемых методами излагаемыми в курсе;
- навыками применения средств и методов вычислительной техники.

4. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения изучения учебной дисциплины у обучающегося должны быть

сформированы компетенции и индикаторы их достижения:

	1 A						
Код и наименование	Код и наименование индикатора						
компетенций	достижения компетенций						
ОПК-3. Способен	ИД-10ПК-3 Применяет знания инженерных наук в области						
использовать знания	эксплуатации современного технологического оборудования,						
инженерных процессов	приборов используемых в производстве продукции из						
при решении	растительного сырья						
профессиональных задач	ИД-20ПК-3 Использует знания инженерных наук при						
и эксплуатации	проектировании предприятий пищевой промышленности						
современного	ИД-30ПК-3 Знает и имеет практические знания по процессам,						
технологического	протекающим в современном технологическом оборудовании						
оборудования и							
приборов							

В результате изучения учебной дисциплины обучающийся должен:

- основные разделы электротехники и электроники, роль и место дисциплины в современной технике и технологии; способы получения, преобразования и применения электроэнергии;
- основы физики явлений в электрических и магнитных цепях; методы расчета электрических и магнитных цепей в различных режимах; основные типы электрических машин и трансформаторов и области применения электронных приборов и устройств; принципы работы основных электрических машин и аппаратов, их рабочие и пусковые характеристики; физические основы электроники; компоненты электронной техники, схемотехнику аналоговых и цифровых устройств, архитектуру микропроцессорных систем.

уметь:

- моделировать и рассчитывать электрические и магнитные цепи электротехнических систем и электронных устройств; пользоваться инженерными прикладными пакетами компьютерных программ; пользоваться правилами безопасности при работе на электротехнических установках, а также при работе с электронными устройствами.

владеть:

- методами обработки результатов экспериментов; принципами создания физических моделей электротехнических и электронных устройств и их экспериментального исследования; навыками использования прикладных программ для моделирования электрических и магнитных цепей и электронных устройств, а также работы с вычислительной техникой для решения рассматриваемого круга задач.

5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Смысловой модуль 1. Анализ и расчёт цепей постоянного и переменного тока. Электромагнетизм.

Тема 1. Постоянный ток. Введение, общие сведения, терминология и понятия. Электрические цепи с одним источником питания, последовательное, параллельное и смешанное соединения активных и пассивных элементов. Свойства и области применения. Законы Ома, Кирхгофа. Расчёт и анализ сложных цепей постоянного тока при помощи прямого применения законов Кирхгофа, метода суперпозиции, узлового напряжения и метода контурных токов.

- **Тема 2. Переменный ток.** Общие понятия, термины, соотношения между различными определениями переменных величин. Цепи с активным, индуктивным и емкостным элементами. Последовательный и параллельный RLC контур. Векторный анализ цепей переменного тока. Треугольники токов, сопротивлений, напряжений, мощностей. Резонансные цепи. Понятие коэффициента мощности.
- **Тема 3. Магнитные цепи.** Законы магнитных цепей. Расчёт магнитной цепи. Прямая и обратная задача. Катушка со стальным сердечником в цепи переменного тока.
- **Тема 4. Трёхфазные цепи переменного тока.** Общие сведения о трёхфазных сетях. Генерирование трёхфазной э.д.с. Соединение генератора (трансформатора) звездой и треугольником. Соединение приёмников звездой и треугольником. Мощность трёхфазных цепей. Симметричные и несимметричные трёхфазные цепи.
- **Тема 5. Электрические измерения и приборы.** Современная измерительная база. Определение ошибок измерения. Конструктивные решения при конструировании и создании измерительных приборов. Измерения тока, напряжения, мощности и энергии, сопротивлений, частоты, неэлектрических величин.
- Смысловой модуль 2. Электрические машины и трансформаторы. Электрооборудование и электропривод.
- **Тема 6. Трансформаторы.** Назначение трансформаторов, их устройство и принцип действия. Холостой ход трансформатора. Векторная диаграмма. Работа трансформатора под нагрузкой. Векторная диаграмма. Приведенный трансформатор. К.п.д. и коэффициент мощности трансформатора. Внешняя характеристика. Трёхфазные трансформаторы, автотрансформаторы, специальные и измерительные трансформаторы.
- **Тема 7.** Электрические машины. Устройство и принцип работы асинхронной машины. Асинхронные двигатели с фазным и короткозамкнутым ротором. Эксплуатационные характеристики асинхронных машин. Понятие о работе асинхронной машины в режиме генератора, двигателя, электромагнитного тормоза, фазорегулятора, автотрансформатора. Пуск и регулирование скорости вращения двигателей. Синхронные машины, устройство и принцип работы. Двигатели постоянного тока, устройство и принцип работы. Способы возбуждения, области применения.
- **Тема 8.** Электрооборудование для автоматического и ручного управления в электрических цепях. Общие сведения. Коммутационные и защитные аппараты управления асинхронными двигателями. Схемы автоматического управления и защиты асинхронных двигателей. Регулирование скорости вращения. Схемы энергоснабжения на предприятиях пищевой и перерабатывающей промышленности.
- **Тема 9. Электрическое освещение.** Расчёт и проектирование электрического освещения на предприятиях пищевой и перерабатывающей промышленности, предприятиях торговли и ресторанного бизнеса.
- Смысловой модуль 3. Электроника и микропроцессорная техника.
- **Тема 10. Полупроводниковые приборы.** Общие сведения о полупроводниках. Диоды, тиристоры, транзисторы. Схемы подключения и питания. Выпрямители. Сетевые фильтры. Усилители тока, мощности. Частотные преобразователи.
- **Тема11. Микропроцессорная техника.** Общие сведения об архитектуре микропроцессора. Система команд микропроцессора. Логические элементы. Создание фрагмента микропроцессорной системы для поддержания заданного значения технологического параметра объекта.

6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

	Количество часов						·					
	Дневная форма обучения			Заочная форма обучения								
				в том чи	сле	1		в том чис		сле		
Названия смысловых модулей и тем	Всего	л ¹	п ²	лаб³	инд ⁴	CP ⁵	Всего	л ¹	Π^2	лаб ³	инд ⁴	CP ⁵
11азвания смысловых модулей и тем	2	3	4	5	инд	6	7	8	9	10	инд	11
Модуль 1		3	•	J		U	,	O		10		- 11
Смысловой модуль 1. Анализ	и расчёт	цепей	постоя	и отонн	перемен	ного то	ка.					
Тема 1. Постоянный ток. Законы Ома, Кирхгофа. Анализ и расчёт цепей постоянного тока. Последовательное, параллельное и смешанное соединения активных и пассивных элементов. Расчёт и анализ сложных цепей постоянного тока при помощи прямого применения законов Кирхгофа, метода суперпозиции, узлового напряжения и метода контурных токов.		4	2	-		4	8,5	0,5	1	-		7
Тема 2. Переменный ток. Общие понятия, термины, соотношения между различными определениями переменных величин. Последовательный и параллельный RLC контур. Векторный анализ цепей переменного тока. Понятие коэффициента мощности.	8	2	2	-		4	8	0,5	0,5	1		7
Тема 3. Магнитные цепи. Законы магнитных цепей. Расчёт магнитной цепи. Прямая и обратная задача. Катушка с стальным сердечником.	8	2	2	-		4	9	0,5	0,5	-		8
Тема 4. Трёхфазные цепи переменного тока. Общие сведения о трёхфазных сетях. Генерирование трёхфазной э.д.с. Соединение генератора (трансформатора) звездой и треугольником. Соединение приёмников звездой и треугольником. Мощность трёхфазных цепей. Симметричные и несимметричные трёхфазные цепи.	8	2	2	-		4	7,75	0,25	0,5	-		7
Тема 5. Электрические измерения и приборы. Современная измерительная база. Определение ошибок решения измерения. Конструктивные конструктивные решения измерения при конструировании и создании измерительных приборов. Измерения тока, напряжения, мощности и энергии, сопротивлений, частоты, неэлектрических величин.	8	2	2	-		4	7,75	0,25	0,5	-		7
Смысловой модуль 2. Электрические маши	ны и тран	нсформ	аторы	. Электр	ооборуд	ование і	и электро	привод				
Тема 6. Трансформаторы. Назначение трансформаторов, их устройство и принцип действия. Холостой ход трансформатора. Векторная диаграмма. Работа трансформатора под нагрузкой. Векторная диаграмма. К.п.д. и коэффициент мощности трансформатора. Трёхфазные трансформаторы, автотрансформаторы, специальные и измерительные трансформаторы.	12	4	4	-		4	7,75	0,25	0,5	-		7
Тема 7. Электрические машины. Устройство и принцип работы асинхронной машины. Асинхронные двигатели с фазным и короткозамкнутым ротором. Эксплуатационные характеристики	12	4	4	-		4	6,75	0,25	0,5	-		6

асинхронных машин. Пуск и регулирование скорости вращения двигателей.												
Тема 8. Электрооборудование для автоматического и ручного управления в электрических цепях. Общие сведения. Коммутационные и защитные аппараты управления асинхронными двигателями. Схемы автоматического управления и защиты асинхронных двигателей. Регулирование скорости вращения. Схемы энергоснабжения на предприятиях пищевой и перерабатывающей промышленности.	8	2	2	1		4	9,75	0,25	0,5	1		9
Тема 9. Электрическое освещение. Расчёт и проектирование электрического освещения на предприятиях пищевой и перерабатывающей промышленности, предприятиях торговли и ресторанного бизнеса.	8	2	2	ı		4	9,9	0,25	0,5	ı		9,15
Смысловой модуль 3. Электроника и микропроцессорная техника.												
Тема 10. Полупроводниковые приборы. Общие сведения о полупроводниках. Диоды, тиристоры, транзисторы. Схемы подключения и питания. Выпрямители. Сетевые фильтры. Усилители тока, мощности. Частотные преобразователи.		4	4	-		4,15	15	0,5	0,5	-		14
Тема 11. Микропроцессорная техника. Общие сведения об архитектуре микропроцессора. Система команд микропроцессора. Логические элементы. Создание фрагмента микропроцессорной системы для поддержания заданного значения технологического параметра объекта.	12	4	4	-		4	15	0,5	0,5	-		14
Катт ⁶	1,6	-	-	-	1,6	-	0,6	-	-	-	0,6	-
CPэк ⁷	-	-	-	-	-	-	-	-	-	-	-	-
КЭ8	-	-	-	-	-	-	-	-	-	-	-	-
Каттэк ⁹	0,25	-	-	-	0.25	-	0,25	-	-	-	0,25	-
Контроль ¹⁰	_	-	-	-	-	-	2	-	-	-	2	-
Всего часов	108	32	30	-	1,85	44,15	108	4	6	-	2,85	95,15

Примечания: 1. л – лекции; 2. п – практические (семинарские) занятия; 3. л – лабораторные занятия; 4. инд – индивидуальные консультации с педагогическими работниками; 5. СР – самостоятельная работа; 6. Катт – контактная работа на аттестацию в период обучения; 7. СРэк – самостоятельная работа в период промежуточной аттестации; 8. КЭ – консультации перед экзаменами; 9. Каттэк – контактная работа на аттестацию в период экзаменационной сессии; 10. Контроль – часы на проведение контрольных мероприятий.

7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Horron		Количе	ство часов
Номер п/п	Название темы	очная форма	заочная форма
1	Постоянный ток.	4	1
2	Переменный ток.	2	0,5
3	Магнитные цепи.	2	0,5
4	Трёхфазные цепи переменного тока.	2	0,5
5	Электрические измерения и приборы.	2	0,5
6	Трансформаторы.	4	0,5
7	Электрические машины.	4	0,5
8	Электрооборудование для автоматического и ручного управления в электрических цепях.	2	0,5
9	Электрическое освещение.	2	0,5
10	Полупроводниковые приборы.	4	0,5
11	Микропроцессорная техника.	4	0,5
	Bcero	30	6

8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ – не предусмотрены

No	Повромно жоли х	Количество часов					
п/п	Название темы	ОЧІ	ая форма	заочная форма			
	Не предусмотрены учебным планом						

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

Howan		Количество часов			
Номер п/п	- HASBAHUE TEMLI		заочная форма		
1	Постоянный ток.	4	7		
2	Переменный ток.	4	7		
3	Магнитные цепи.	4	8		
4	Трёхфазные цепи переменного тока.	4	7		
5	Электрические измерения и приборы.	4	7		
6	Трансформаторы.	4	7		
7	Электрические машины.	4	6		
8	Электрооборудование для автоматического и ручного управления в электрических цепях.	4	9		
9	Электрическое освещение.	4	9,85		
10	Полупроводниковые приборы.	4,15	14		
11	Микропроцессорная техника.	4	14		
	Всего	44,15	95,85		

10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Рабочая программа адаптирована для лиц с умеренными нарушениями функций зрения, слуха и речи.

В ходе реализации учебной дисциплины используются такие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- лекции и задания практикума оформляются в виде электронных документов, которые могут быть увеличены до удобного пользователю шрифта (для просмотра используются программы для чтения файлов *.pdf и *.doc, *.docx);
- письменные задания выполняются на компьютере со специализированным программным обеспечением или в тетради;
- для слабовидящих, при необходимости, предоставляется звукоусиливающая аппаратура индивидуального пользования; возможно также использование собственной звукоусиливающей аппаратуры индивидуального пользования;
- для слабослышащих, при необходимости, предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
- текущий модульный контроль осуществляется по результатам выполненного практикума и тестирования на компьютере;
- зачет является результатом набранных студентом на протяжении семестра баллов; при необходимости повышения баллов студент может ответить на дополнительные вопросы в письменном виде (не более 20 баллов);
 - при необходимости, предусматривается увеличение времени для подготовки ответа;
- процедура проведения зачета для обучающихся устанавливается с учетом их индивидуальных психофизических особенностей.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации.

11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ (выдают для студентов, находящихся на индивидуальном графике, а также студентов, желающих повысить балл)

К индивидуальным заданиям отнесено выполнение домашней контрольной работы и (или) расчетно-графической работы в соответствии с методическими указаниями для самостоятельной работы студентов, написание научных работ на конференции и др. виды работ по темам курса.

Индивидуальные задания отображают содержание дисциплины и соответствуют ее структуре (содержательным модулям и входящим в них темам, их логической последовательности).

Индивидуальные задания предполагают знание принципов, содержания, понятийного аппарата – глоссария дисциплины и, вместе с тем, использование эвристического потенциала мышления.

Индивидуальные задания имеют комплексный характер и включают в себя:

- теоретические вопросы,
- задачи;
- определения дефиниции базовых понятий с выделением их значения.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

Контрольная работа № I

Задача І.І. Для электрической цепи постоянного тока (рис. І.І) определить токи $I_1 - I_7$ в ветвях резисторов $R_1 - R_7$, составить баланс мощностей, а также определить режим работы источников питания и напряжение U_{12} между точками І и2 цепи. Сопротивления результатов $R_1 - R_7$, ЭДС $E_1 - E_6$ и напряжения U_5 и U_7 источников питания приведены в табл. І.І. Положение выключателей $B_3 - B_8$ и метод решения указаны в табл. І.І, а.

Таблица I.I

Величины			После	дняя ци	фра ном	иера зач	ётной кі	нижки						
В ЕЛИЧИНЫ	1	2	3	4	5	6	7	8	9	0				
$\mathbf{E}_{1},\mathbf{B}$	50	60	70	80	90	100	110	120	130	140				
E ₄ , B	90	80	60	50	40	140	150	110	100	90				
E ₆ , B	120	110	100	90	80	70	60	50	40	30				
U ₅ , B	10	20	30	40	30	30	20	60	50	40				
U ₇ , B	40	40	50	50	60	60	30	30	20	70				
R ₁ , O _M	1	1	2	2	3	3	2	2	1	1				
R ₄ , Ом	2	2	3	4	3	5	4	2	6	4				
R ₆ , Ом	1	2	3	7	6	4	5	3	2	2				
R ₂ , Ом	4	3	2	1	7	3	2	1	1	1				
R ¹ ₂ , O _M	10	9	8	6	5	2	7	6	5	4				
R ₃ , Ом	5	5	5	4	4	6	6	5	4	6				
R ¹ ₃ , O _M	1	2	3	4	5	6	7	8	9	10				
R ₅ , Ом	8	7	6	5	4	3	2	1	8	9				
R ₇ , Ом	10	10	9	9	8	8	6	6	5	5				

Таблица I.Ia

Первая буква фамилии	Выключатели разомкнуты	Метод решения задачи
А, Б, В, Г, Д, Е, Ж, З, И	B ₅ , B ₆ , B ₇ ,	Метод непосредственного применения законов Кирхгофа
К, Л, М, Н, О, П, Р, С, Т	$B_3, B_4, B_5,$	Метод контурных токов
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	B4, B5, B6	Метод узлового напряжения

Рис. 1.1

Задача I.2. Электрическая цепь переменного синусоидального тока с частотой f=50 Γ ц (рис. I.2), находящаяся под действием напряжения U, содержит активные R_1-R_5 сопротивления, реактивные индуктивные $X_{\alpha\,2},\,X_{\alpha\,3},\,X_{\alpha\,6}$ и реактивные емкостные $X_{C1},\,X_{C4},\,X_{C7}$ сопротивления. По данным табл. I.2 с учётом положения выключателей B_1-B_7 (табл. I.2a) определить токи ветвей I_1-I_7 , проверить соблюдение баланса полных S,

активных P и реактивных Q мощностей, построить векторную диаграмму напряжений и токов.

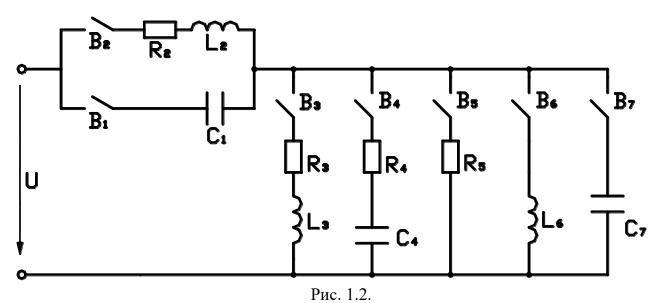

Задачу решить методом комплексных чисел.

Таблица I.2

Dayway	После	дняя ц	ифра н	омера	зачётн	ой кни	жки									
Величины	1	2	3	4	5	6	7	8	9	0						
U, B	100	110	120	130	140	150	150	160	170	180						
$\mathbf{U}\alpha$ 3, \mathbf{B}	20	30	40	50	60	70	80	90	10	70						
R ₁ , Ом	2	3	4	5	6	7	8	9	10	11						
R ₂ , Ом	4	5	4	5	4	5	4	5	4	5						
R ₃ , Ом	10	9	8	7	6	5	4	3	2	2						
R ₄ , Ом	12	13	14	15	16	17	18	19	20	22						
R 5, Ом	20	21	22	23	24	25	26	27	28	30						
Χ α 2, O M	4	4	4	4	4	4	4	4	4	4						
Хα 3, Ом	15	16	17	18	19	20	21	22	23	24						
Хα 6, Ом	20	30	40	50	60	70	80	90	100	110						
Х _{С1} , Ом	3	4	5	3	4	5	3	4	5	6						
Хс4, Ом	8	9	10	7	12	14	16	17	18	19						
Хс7, Ом	20	24	26	28	30	12	14	16	24	26						

Таблица 1.2.а

Первая буква фамилии	Выключатели замкнуты				
А, Б, В, Г, Д, Е, Ж, З, И	B1, B4, B6				
К, Л, М, Н, О, П, Р, С, Т	B2, B3, B5				
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	B1, B2, B7				

Задача 1.3. В трехфазную сеть с симметричной системой линейных напряжений U включен симметричный потребитель электроэнергии, фазы которого имеют комплексные сопротивления: $\underline{Z}a=\underline{Z}B=\underline{Z}c$ (рис. 1.3,a,б) и соединены «звездой» или

Zав=**Z**вс=**Z**са и соединены «треугольником». Принимая во внимание данные, приведённые в табл. 1.3 и табл. 1.3,а для каждого варианта задания определить линейные I и фазные I_{Φ} токи, активную P, реактивную Q и полную S мощности потребителя, показания ваттметров найти значения активных и реактивных сопротивлений фаз. Построить векторную диаграмму токов и напряжений на комплексной прямой.

Таблица 1.3

D	После,	дняя ци	фра ног	мера зач	іётной і	книжки				
Величины	1	2	3	4	5	6	7	8	9	0
U ,B	127	220	380	660	220	380	127	220	380	660
<u>Z</u> фаз, Ом	10	20	30	40	22	44	3+j4	2+j3	6+j8	5+j6

Таблица 1.3а

Первая буква фамилии	Схема соединения	Положение выкл. В
А, Б, Г, Д, Е, Ж, З, И	«звезда»	Замкнут
К, Л, М, Н, О, П, Р, С, Т	«треугольник»	Замкнут
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	«звезда»	Разомкнут



Рис. 1.3

Контрольная работа № 2

Задача 2.1. Потребители электрической энергии питаются от трехфазного двухобмоточного трансформатора с номинальной мощностью $S_{\text{ном}}$ при номинальном первичном $U_{1\ \text{ном}}$ и вторичном $U_{2\ \text{ном}}$ линейных напряжениях с номинальной частотой $f=50\ \Gamma$ ц.

Технические данные трансформатора: потери мощности при холостом ходе P_0 , потери мощности при коротком замыкании P_k , напряжение которого замыкания U_k % при токах в обмотках $I_{1 \text{ ном}}$ и $I_{2 \text{ ном}}$, равных номинальным. Способ соединения обмоток трансформатора «звезда». Принимая во внимание данные трансформатора, приведены в табл. 2.1, определить коэффициент трансформации k, коэффициент полезного действия η_{iii} при номинальной нагрузке, $\cos \varphi_2 = 0.8$, токи в первичной $I_{1 \text{ ном}}$ и во вторичной $I_{2 \text{ ном}}$ обмотках, фазные первичное $U_{1 \text{ 0}}$ и вторичное $U_{2 \text{ 0}}$ напряжения при холостом ходе, сопротивления короткого замыкания R_k и X_k , активные R_1 и R_2 и реактивные X_1 и X_2 сопротивления обмоток, активное U_{kR} и индуктивное U_{kL} падения напряжения при

коротком замыкании, вторичное напряжение U_2 при токе нагрузки I_2 =2 I_2 ном и $\cos \varphi_2$ =0,7. Построить зависимость $\Delta U_2\%(\cos \varphi_2)$ процентного изменения напряжения на вторичной обмотке трансформатора при номинальной нагрузке и изменении коэффициента мощности $\cos \varphi_2$.

Таблица 2.1

Последняя цифра зачётной книжки	S _{hom} , кВА	U _{1 ном} , В	U _{2 ном} , В	Первая буква фамилии	Р ₀ , Вт	P _k , Bt	U _k ,
1	10	6000	250	А, Б	200	100	2
2	20	6000	400	В, Г	300	200	3
3	30	8000	500	Д, Е, Ж	400	300	4
4	40	8000	600	3, И, К	500	50	5
5	50	9000	700	Л, М, Н	600	150	4,5
6	60	9000	800	О, П, Р	700	250	3,5
7	70	5000	500	С, Т, У	800	400	5,5
8	80	4000	400	Ф, Х, Ц	900	350	6
9	90	3000	300	Ч, Ш, Щ	600	500	5,5
0	100	2000	200	Э, Ю, Я	400	600	5

Задача 2.2 Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет номинальные данные, указанные в табл. 2.2., табл. 2.2а. Номинальные: линейное напряжение питающей сети $U_{1\text{ ном}}$, частота питающего тока f=50 Γ ц, мощность на валу $P_{2\text{ ном}}$, синхронная частота вращения магнитного поля η_{1} , скольжение ротора $S_{\text{ном}}$, КПД $\eta_{i\hat{n}}$, коэффициент мощности $\cos\varphi_{\text{ ном}}$, отношение $m_{i}=I_{\text{пуск}}$ / $I_{\text{ном}}$ — начального пускового $I_{\text{пуск}}$ к номинальному току $I_{\text{ном}}$, отношение начального пускового момента $M_{\text{пуск}}$ к номинальному моменту на валу $M_{\text{ном}}$: $m_{i\hat{n}\hat{e}}=\frac{\dot{I}_{i\hat{n}\hat{e}}}{\dot{I}_{i\hat{n}\hat{i}}}$, отношение $m_{kp}=\frac{\dot{I}_{i\hat{n}}}{\dot{I}_{i\hat{n}\hat{i}}}$ минимального к номинальному моменту, отношение $m_{kp}=\frac{\dot{I}_{i\hat{n}}}{\dot{I}_{i\hat{n}\hat{i}}}$ максимального момента к номинальному моменту.

Определить номинальный $M_{\text{ном}}$, начальный пусковой $M_{\text{пуск}}$ и максимальный $M_{\text{мах}}$ моменты, номинальный $I_{1\text{ ном}}$ и начальный пусковой $I_{1\text{ пуск}}$ токи, частоту тока в роторе $f_{2\text{ ном}}$ при номинальной нагрузке и в момент пуска $f_{2\text{ пуск}}$, число пар полюсов обмотки статора P, синхронную угловую частоту вращения магнитного поля Ω_{1} , а также угловую частоту вращения ротора $\Omega_{2\text{ }iii}$ и мощность на зажимах двигателя $P_{1\text{ ном}}$ при номинальном режиме работы.

Определить максимальный момент $M_{\text{мах}}$ двигателя при напряжении питающей сети, равном U_1 = 0,9 $U_{\text{ном}}$. Построить механическую характеристику M(S) двигателя по точкам, соответствующим скольжения ротора S=0; S=1; S_{kp} ; $S_{\text{ном}}$; S=0,4; 0,6; 0,8.

Таблица 2.2

Последняя		Технические данные электродвигателя								
цифра зачетной книжки	U _{1 ном} , В	Р _{2 ном} , кВт	n ₁ , об/мин	S _{HOM} , %	$\eta_{_{ ilde{t}\hat{t}\hat{t}}}$,	$\cosarphi_{\hat{\imath}\hat{\imath}\hat{\imath}}$				
1	220	0,18	1500	8,9	0,64	0,64				
2	380	0,25	1500	8,0	0,68	0,65				
3	220	0,37	1500	9,0	0,68	0,69				
4	380	0,55	1500	7,3	0,70	0,70				
5	660	0,75	1500	7,5	0,72	0,73				
6	220	1,1	1500	5,4	0,75	0,81				
7	380	22	3000	2,0	0,9	0,9				
8	660	30	1500	1,9	0,9	0,85				
9	220	37	3000	1,7	0,91	0,9				
0	380	45	3000	1,6	0,93	0,9				

Таблица 2.2а

Парода бууга фамилии		Коэффициенты					
Первая буква фамилии	m_i	тпуск	m_{\min}	m_{kp}			
А, Б, В, Г, Д, Е, Ж, З, И	5	1,2	1,1	2,0			
К, Л, М, Н, О, П, Р, С, Т	6	1,5	1,3	2,5			
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	7	1,8	1,5	3,0			

Задача 2.3. Электродвигатель постоянного тока параллельного возбуждения характеризуется номинальными данными (см. табл. 2.3): напряжение питающей сети $U_{\text{ном}}$, мощность на валу $P_{\text{ном}}$, частота вращения якоря $n_{\text{ном}}$, ток $I_{\text{ном}}$. Сопротивление цепи якоря двигателя R_s =0,05 $U_{\text{ном}}$ / $I_{\text{ном}}$ Ом. При расчетах током возбуждения I_e электродвигателя пренебречь. Определить КПД двигателя при номинальной нагрузке, пускового реостата, ограничивающего сопротивление $R_{\text{пуск}}$ электродвигателя до значения $I_{\text{пуск}} = a \cdot I_{\text{ном}}$, а также добавочное сопротивление R в цепи якоря, при котором двигатель в режиме противовключения при моменте нагрузки, равном в Мном, развивает частоту вращения с пном. Рассчитать и построить в единой системе координат искусственную и естественную механические характеристики п (М) и зависимость тока от момента электродвигателя I (M) в пределах нагрузки от M=2 $M_{\text{ном}}$, до $M = -2 M_{\text{ном}}$.

Коэффициенты a, e, c приведены в табл. 2.3a.

Таблица 2.3а

Попрод бумого формули	Коэффициенты					
Первая буква фамилии	a	в	c			
А, Б, В, Г, Д, Е, Ж, З, И	1,1	0,9	0,5			
К, Л, М, Н, О, П, Р, С, Т	1,2	1,4	0,8			
У, Ф, Х, Ц, Ч, Ш, Д, Э, Ю, Я	1,3	0,5	0,5			

Таблица 2.3

	Номинальные данные двигателя					
Последняя цифра зачётной книжки	U _{1 ном} , В	Р _{ном} , кВт	п _{ном} , об/мин	I _{ном} , А		
1	110	2,0	1000	23		
2	220	2,5	1100	14		
3	220	3,5	1200	21		
4	110	5,0	1300	57		
5	220	6,5	900	37		
6	380	8,0	800	27		
7	220	9,0	60	36		
8	110	10,0	500	12		
9	380	12,0	550	40		
0	220	14,0	450	80		

Контрольная работа № 3

Задача 3.1. Трехфазные асинхронные электродвигатели используются для привода механизма с циклическим графиком момента нагрузки, приведённым к его валу. Используя данные, приведены в табл. 3.1 и табл. 3.1а для соответствующего варианта задания, определить расчётную мощность P_p и выбрать по катологу по условиям нагрева электродвигатель и произвести проверку на его перегрузочную способность. В табл. 3.1 и табл. 3.1a: $M_1,\ M_2,\ M_3$ — моменты нагрузки на валу двигателя, соответствующие участкам нагрузочного графика; $t_1,\ t_2,\ t_3$ — время работы двигателя с заданными моментами нагрузки; t_0 — время паузы (интервалы между циклами работы); n — частота вращения двигателя; K_U — коэффициент, учитывающий возможное снижение питающей сети.

Определить энергию W, потребляемую из питающей сети за время цикла работы двигателя; построить нагрузочный график M (t).

Таблица 3.1

Таолица 3.1	3.5	3.5	3.5		
Последняя цифра зачётной книжки	M_1 ,	M_2 ,	M_3 ,	n,	$\mathbf{K}_{\mathbf{U}}$
	Н∙м	Н∙м	Н∙м	об/мин	140
1	10	50	30	735	0.9
2	10	45	35	935	0.95
3	10	40	40	735	0.9
4	15	50	25	935	0.95
5	15	55	40	735	0.9
6	20	55	45	935	0.95
7	25	30	10	935	0.95
8	35	45	15	735	0.9
9	40	65	20	735	0.9
0	45	80	5	935	0.95

Таблица 3.1а

Первая буква фамилии	t ₁ ,	t ₂ ,	t ₃ ,	t ₀ ,
А, Б, В, Г, Д, Е, Ж, З, И	5	10	15	10
К, Л, М, Н, О, П, Р, С, Т	10	15	20	15
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	15	20	25	20

Задача 3.2. Составить схему однокаскадного низкочастотного усилителя и рассчитать коэффициент усиления по току K, напряжению K_U и мощности K_p , а также входное $R_{\rm ex}$ и выходное сопротивления для заданного варианта схемы включения транзистора по его h — параметрам для рабочей точки. Величины сопротивления $R_{\rm H}$ нагрузки и внутреннего сопротивления генератора сигналов $R_{\rm r}$ приведены для соответствующего варианта в табл. 3.2, табл. 3.2а.

Таблица 3.2

Последня я цифра зачётной книжки	Тип транзист ора	Схема включения	h ₁₁ , Ом	h ₁₂ , Ом	h ₂₁ , Ом	h ₂₂ , Ом
1	П14	ОК	775	1	25	$20 \cdot 10^{-6}$
2	ГТ332А	ОБ	5,79	$0,202 \cdot 10^{-3}$	-0,98	$1,1\cdot 10^{-6}$
3	ГТ332А	ОЭ	330	$1,6\cdot 10^{-4}$	56	$62,5\cdot 10^{-6}$
4	ГТ332А	ОК	331	1	-57	$1,1\cdot 10^{-6}$
5	П416	ОБ	15,8	$-30,6\cdot10^{-3}$	-0,97	$3,7 \cdot 10^{-6}$
6	П416	ОЭ	650	$32 \cdot 10^{-3}$	40	$1,5 \cdot 10^{-4}$
7	П416	ОК	632	1	-40	$2,5\cdot 10^{-4}$
8	П14	ОБ	31	$3,2\cdot 10^{-4}$	-0,96	$0.8 \cdot 10^{-6}$
9	П14	ОЭ	775	$3 \cdot 10^{-4}$	24	$20 \cdot 10^{-6}$
0	П14	ОК	775	1	-25	18.10-6

Таблица 3.2а

	Сопротивления				
Первая буква фамилии	R _н , кОм	R _r , кОм			
А, Б, В, Г, Д, Е, Ж, З, И	2	6			
К, Л, М, Н, О, П, Р, С, Т	8	10			
У, Ф, Х, Ц, Ч, Ш, Щ, Э, Ю, Я	3	20			

12. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗУСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства детализируются по видам работ в оценочных материалах по учебной дисциплине, которые утверждаются на заседании кафедры.

Система оценивания по учебной дисциплине по очной форме обучения*

Форма контроля	Макс. количество баллов				
	За одну работу	Всего			
Текущий контроль:					
- собеседование (темы 111)	4	44			
- тестирование (темы 111)	4	44			
- реферат	12	12			
Промежуточная аттестация	Зачет	100			
Итого за семестр	100				

^{*} в соответствии с утвержденными оценочными материалами по учебной дисциплине

Система оценивания по учебной дисциплине на заочной форме обучения

Форма контроля	Макс. количес	тво баллов
	За одну работу	Всего
Текущий контроль:		
- дискуссия, собеседование	4	44
- тестирование	8	32
- контрольная работа	8	24
Промежуточная аттестация	Зачет	100
Итого за семестр	100	

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ТЕКУЩЕМУ МОДУЛЬНОМУ КОНТРОЛЮ

- 1. Электрическая энергия, её особенности и области применения. Значение электрификации
- в развитии технической базы.
- 2. Основные понятия об электрических цепях.
- 3. Условные положительные направления токов, э. д. с. и напряжений.
- 4. Электрические цепи с одним источником питания.
- 5. Режимы работы электрических цепей.
- 6. Расчёт сложных электрических цепей постоянного тока при помощи законов Кирхгофа.
- 7. Метод контурных токов.
- 8. Основные понятия и получение синусоидального тока.
- 9. Действующие и средние значения синусоидальных э. д. с., напряжений и токов.
- 10. Векторные диаграммы.
- 11. Комплексный метод расчёта цепей переменного тока.
- 12. Законы Кирхгофа для цепей синусоидального тока.
- 13. Электрическая цепь синусоидального тока с активным сопротивлением.
- 14. Электрическая цепь синусоидального тока с индуктивностью.
- 15. Электрическая цепь синусоидального тока с ёмкостью.
- 16. Последовательное соединение элементов R, L, и C.
- 17. Мощность цепи синусоидального тока с элементами R, L, и C.
- 18. Параллельное соединение элементов R, L, и C.
- 19. Резонансные явления, условия возникновения и практическое значение.
- 20. Повышение коэффициента мощности.
- 21. Понятие о трёхфазной системе э. д. с. и её получение.
- 22. Трёхфазные цепи с симметричными пассивными приёмниками:
 - а) соединение звездой;
 - б) соединение треугольником.
- 23. Трёхфазные цепи с несимметричными пассивными приёмниками:
 - а) соединение звездой;
 - б) соединение треугольником.
- 24. Мощность трёхфазной цепи.
- 25. Магнитные цепи переменных магнитных потоков.
- 26. Особенности электромагнитных процессов в катушке с магнитопроводом.
- 27. Магнитные потери энергии.
- 28. График мгновенных значений магнитного потока и тока при синусоидальном напряжении.
- 29. Значение электрических измерений на современном этапе НТР. Основные понятия об электроизмерительных приборах.
- 30. Магнитоэлектрические приборы.
- 31. Электромагнитные приборы.

- 32. Электродинамические и ферродинамические приборы.
- 33. Счётчики электрической энергии (индукционные приборы).
- 34. Измерение токов, напряжений, сопротивлений.
- 35. Измерение мощности и энергии.
- 36. Устройство и принцип действия трансформатора.
- 37. Холостой ход трансформатора.
- 38. Нагрузочный режим работы трансформатора.
- 39. Приведенный трансформатор.
- 40. Внешняя характеристика трансформатора.
- 41. К. п. д. трансформатора.
- 42. Трёхфазные трансформаторы.
- 43. Специальные трансформаторы (измерительные).
- 44. Автотрансформаторы.
- 45. Устройство и принцип действия трёхфазного асинхронного двигателя.
- 46. Активная мощность и к. п. д. асинхронного двигателя.
- 47. Электромагнитный момент асинхронного двигателя.
- 48. Пуск асинхронных двигателей и их механические характеристики.
- 49. Регулирование частоты вращения асинхронных двигателей.
- 50. Основные понятия об электронных устройствах.
- 51. Полупроводниковый диод.
- 52. Полупроводниковый триод (транзистор).
- 53. Тиристор.
- 54. Интегральные микросхемы и миниатюризация приборов и устройств современной электроники.
- 55. Выпрямители, сглаживающие фильтры.
- 56. Общие понятия об электронных усилителях.
- 57. Транзисторные усилители.

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТУ

- 1. Закон Ома. Уравнения электрического состояния цепи.
- 1.1 Формулировка и математическая запись закона Ома для участка цепи.
- 1.2. Формулировка и математическая запись закона Ома для полной цепи.
- 1.3. Формулировка и математическая запись первого закона Кирхгофа для цепей постоянного тока.
- 1.4. Формулировка и математическая запись второго закона Кирхгофа для цепей постоянного тока.
- 1.5. Физическая причина появления сопротивления у металлов и формула зависимости удельного сопротивления металлов от температуры.
- 1.6. Понятие ЭДС, напряжения, падения напряжения. Основные формулы, определения, единиц измерения.
- 1.7. Работа и мощность электрического тока.
- 2. Режимы работы электрической цепи.
- 3. Последовательное соединение активных и пассивных элементов
- 4. Законы Кирхгофа. Параллельное соединение пассивных элементов.
- 5. Преобразование треугольника сопротивлений в эквивалентную звезду сопротивлений и обратное преобразование.
- 6. Метод расчёта эл. цепей с применением законов Кирхгофа.
- 7. Метод узлового напряжения.
- 8. Применение метода наложения при расчёте эл.цепей
- 9. Метод контурных токов при расчёте эл.цепей.
- 10. Основные понятия и способы получения синусоидального тока. Определения переменных электрических величин.
- 11. Получение однофазного переменного тока. Векторная диаграмма.

- 12. Среднее и действующее значение переменного тока.
- 13. Цепь переменного тока с активным сопротивлением.
- 14. Цепь переменного тока с индуктивностью.
- 15. Цепь переменного тока с ёмкостью.
- 16. Цепь с последовательным соединением активного сопротивления, ёмкости и индуктивности.
- 17. Треугольники напряжений, сопротивлений, мощностей.
- 18. Разветвлённые цепи переменного тока. Параллельное соединение сопротивлений.
- 19. Резонанс токов.
- 20. Резонанс напряжений.
- 21. Графический метод расчёта цепей переменного тока. Метод проводимостей.
- 22. Получение трёхфазного тока.
- 23. Симметричная трёхфазная система э.д.с. Связанная трёхфазная система.
- 24. Соединение обмоток генератора (трансформатора) и приёмника звездой и треугольником.
- 25. Симметричная нагрузка в трёхфазной сети. Фазные и линейные э.д.с., напряжения и токи при симметричной нагрузке.
- 26. Мощность симметричной трёхфазной цепи.
- 27. Магнитные цепи электротехнических устройств. Основные понятия.
- 28. Магнитная цепь. Типы магнитных цепей. Магнитные материалы и их свойства. Электромагнитные устройства.
- 29. Термины и определения измерительной техники. Классификация электроизмерительных приборов
- 30. Измерительные механизмы магнитоэлектрической системы
- 31. Измерительные механизмы электромагнитной, электродинамической и ферродинамической систем
- 32. Измерительные механизмы индукционной и вибрационной систем.
- 33. Методы измерения напряжений, токов, сопротивлений, мощности, эл. энергии.
- 34. Устройства для расширения пределов измерения приборов
- 35. Конструкция и принцип работы трансформатора.
- 36. Холостой ход трансформатора. Работа трансформатора под нагрузкой
- 37. Приведенный трансформатор. Внешняя характеристика трансформатора
- 38. Потери и к.п.д. трансформатора.
- 39. Автотрансформатор.
- 40. Измерительные и специальные трансформаторы.
- 41. Классификация электрических машин.
- 42. Асинхронные машины.
- 43. Устройство трёхфазного асинхронного двигателя.
- 44. Принцип образования вращающегося магнитного поля.
- 45. Принцип действия трёхфазного асинхронного двигателя. Э.д.с. статора и ротора.
- 46. Векторная диаграмма асинхронного двигателя.
- 47. Схема замещения асинхронного двигателя.
- 48. Энергетическая диаграмма асинхронного двигателя.
- 49. Вращающий момент асинхронного двигателя.
- 50. Механическая характеристика асинхронного двигателя.
- 51. К.п.д. и коэффициент мощности асинхронного двигателя.
- 52. Способы пуска асинхронных двигателей.
- 53. Выбор типа двигателя. Выбор мощности двигателя для различных режимов работы.
- 54. Продолжительный режим работы двигателей с постоянной нагрузкой
- 55. Продолжительный режим работы двигателей с переменной нагрузкой
- 56. Методы среднеквадратичных значений тока, момента, мощности.
- 57. Выбор мощности двигателя для кратковременного режима.
- 58. Выбор мощности двигателя для повторно- кратковременного режима.

- 59. Электроника, её значение в машиностроении отрасли.
- 60. Диоды, характеристики и параметры, принцип действия.
- 61. Транзистор, устройство, принцип действия, схемы включения.
- 62. Статические характеристики и параметры полупроводниковых триодов.
- 63. Тиристор, принцип действия, семы включения.
- 64. Выпрямители, электрические схемы и принцип действия.
- 65. Блок- схема выпрямителя. Однополупериодный выпрямитель.
- 66. Двухполупериодный выпрямитель.
- 67. Мостовой двухполупериодный выпрямитель.
- 68. Трёхфазный выпрямитель.
- 69. Сглаживающие фильтры, принцип работы и электрические схемы.

13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Зачёт

Текущее тестирование и самостоятельная работа									Сумма		
Смысловой модуль 1					См	Смысловой модуль 2			Смысловой		в балах
						, ,				цуль 3	
Тема1	Тема 2	Тема 3	Гема 4	Тема 5	Тема 6	Тема 7	Тема8	Тема9	Гема 10	Тема 11	
5	5	5	5	10	10	10	10	10	15	15	100
30			40								

Примечание: Т1, Т2, ..., Т11 – номера тем смысловых модулей.

Соответствие государственной шкалы оценивания академической успеваемости

Сумма баллов за все виды учебной деятельности	По государственной шкале	Определение
60-100	«Зачтено»	обучающийся освоил учебный материал всех разделов дисциплины, овладел необходимыми умениями и навыками при выполнении практических заданий
0-59	«Не зачтено»	обучающийся не освоил учебный материал всех разделов дисциплины, практики не овладел необходимыми умениями и навыками при выполнении практических заданий (возможность повторной аттестации)

14. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная:

- 1. Электротехника и электроника [Электронный ресурс] : учеб. пособие / М. Ю. Еремин [и др.]. Воронеж : Воронежский ГАУ, 2018 . Локал. компьютер сеть НБ ДонНУЭТ.
- 2. Сивяков, Б. К. Электротехника [Электронный ресурс] : учебное пособие / Б. К. Сивяков, Д. Б. Сивяков ; Министерство образования и науки Российской Федерации (РФ), Саратовский государственный технический университет им. Гагарина Ю. А. Саратов : КУБиК, 2018 . Локал. компьютер сеть НБ ДонНУЭТ
- 3. Соколов, С. А. Электротехника, электроника и микропроцессорная техника [Электронный ресурс] : конспект лекций для студентов направления 15.03.02

"Машиностроение" Технол. машины и оборуд. (профиль "Оборуд. перераб. и пищ. прв"), оч. и заоч. форм обучения / С. А. Соколов; М-во образования и науки ДНР, ГОВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. общеинженерных дисциплин. — Донецк: ДонНУЭТ, 2017. — Локал. компьютер. сеть НБ ГОВПО "ДонНУЭТ".

Дополнительная:

- 1. Электротехника [Электронный ресурс] : практикум ; Хотунцев Ю. Л. [и др.] . Москва : МПГУ, 2020 . 204 с. ISBN 978-5-4263-0898-5 Локал. компьютер сеть НБ ДонНУЭТ
- 2. Гуков П.О. Г939 Теоретические основы электротехники: учебное пособие / П.О. Гуков, Р.М. Панов, С.А. Филонов. Воронеж: ФГБОУ ВО Воронежский ГАУ, 2019. 125 с Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=37249748
- 3. Зайцева И.Н. Электротехника. Линейные цепи постоянного тока: лабораторный практикум. / И.Н. Зайцева, Н.А. Фортунова, С.С. Токарева, Н.А. Ярлыкова Елец: «Елецкий государственный университет им. И.А. Бунина, 2019. 80 с. Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=41383747
- 4. Скрипник, И. Л. Электротехника и электроника. Ч. 1 Электротехника [Электронный ресурс] : учебное пособие / И. Л. Скрипник, С. В. Воронин . СПб., 2017 . Локал. компьютер сеть НБ ДонНУЭТ.
- 5. Воронин, С. В. Электротехника и электроника. Ч. 2 Электроника [Электронный ресурс] : учебное пособие / С. В. Воронин, И. Л. Скрипник . СПб., 2017 . Локал. компьютер сеть НБ ДонНУЭТ
- 6. Баксанский О.Е. Краткий исторический очерк развития электротехники / О.Е. Баксанский, С.Э. Демидов. М.: РАН, 2017 38 с. Текст : электронный // Электроннобиблиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=32868622
- 7. Абубакиров К. М. А13 Электротехника и электроника: Практикум. Екатеринбург: Изд-во УГГУ, 2010. 95 с. ISBN 978-5-8019-0229-6 Текст : электронный // Электронно-библиотечная система eLIBRARY: [сайт]. URL: https://www.elibrary.ru/item.asp?id=26669924

Электронные ресурсы:

- 1. Соколов С.А. Электротехника и электроника [Электронный ресурс]: дистанционный курс / С.А. Соколов Электрон. текстовые данные. Донецк: ГО ВПО «ДОННУЭТ», 2019. Режим доступа: https://distant.donnuet.education/course/view.php?id=4337
- 2. Соколов, С. А. Электротехника, электроника и микропроцессорная техника [Электронный ресурс] : конспект лекций для студентов направления 15.03.02 "Машиностроение" Технол. машины и оборуд. (профиль "Оборуд. перераб. и пищ. прв"), оч. и заоч. форм обучения / С. А. Соколов ; М-во образования и науки ДНР, ГОВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. общеинженерных дисциплин . Донецк : ДонНУЭТ, 2017 . Локал. компьютер. сеть НБ ГОВПО "ДонНУЭТ"

15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

1. Автоматизированная библиотечная информационная система UNILIB [Электронный ресурс] — Версия 1.100. — Электрон. дан. — [Донецк, 1999-]. — Локал. сеть Науч. б-ки ГО ВПО Донец. нац. ун-та экономики и торговли им. М. Туган-Барановского. — Систем.

требования: ПК с процессором ; Windows ; транспорт. протоколы TCP/IP и IPX/SPX в ред. Microsoft ; мышь. – Загл. с экрана.

- 2. IPRbooks: Электронно-библиотечная система [Электронный ресурс] : [«АЙ Пи Эр Медиа»] / [ООО «Ай Пи Эр Медиа»]. Электрон. текстовые, табл. и граф. дан. Саратов, [2018]. Режим доступа: http://www.iprbookshop.ru. Загл. с экрана.
- 3. Elibrary.ru [Электронный ресурс] : науч. электрон. б-ка / ООО Науч. электрон. б-ка. Электрон. текстовые. и табл. дан. [Москва] : ООО Науч. электрон. б-ка., 2000- .– Режим доступа : https://elibrary.ru. Загл. с экрана.
- 4. Научная электронная библиотека «КиберЛенинка» [Электронный ресурс] / [ООО «Итеос»; Е. Кисляк, Д. Семячкин, М. Сергеев]. Электрон. текстовые дан. [Москва: ООО «Итеос», 2012-]. Режим доступа: http://cyberleninka.ru. Загл. с экрана.
- 5. Национальная Электронная Библиотека.
- 6. «Полпред Справочники» [Электронный ресурс] : электрон. б-ка / [База данных экономики и права]. Электрон. текстовые дан. [Москва : ООО «Полпред Справочники», 2010-]. Режим доступа : https://polpred.com. Загл. с экрана.
- 7. Book on lime : Электронно-библиотечная система [Электронный ресурс] : ООО «Книжный дом университета». Электрон. текстовые дан. Москва, 2017. Режим доступа : https://bookonlime.ru.— Загл. с экрана.
- 8. Университетская библиотека ONLINE : Электронно-библиотечная система [Электронный ресурс] : ООО «Директ-Медиа». Электрон. текстовые дан. [Москва], 2001. Режим доступа : https://biblioclub.ru. Загл. с экрана.
- 9. Бизнес+Закон [Электронный ресурс] : Агрегатор правовой информации / [Информационно-правовая платформа]. Электрон. текстовые дан. [Донецк, 2020-]. Режим доступа : https://bz-plus.ru. Загл. с экрана.
- 10. Электронный каталог Научной библиотеки Донецкого национального университета экономики и торговли имени Михаила Туган-Барановского [Электронный ресурс] / НБ ДонНУЭТ. Электрон. дан. [Донецк, 1999-]. Режим доступа: http://catalog.donnuet.education Загл. с экрана.

16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Для проведения лекционных занятий используется демонстрационное оборудование.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети интернет и обеспечением доступа в электронную информационно-образовательную среду организации.

Наименование помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом, в том числе помещения для самостоятельной работы, с указанием перечня основного оборудования, учебно-наглядных пособий и используемого программного обеспечения	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом
1. Учебная аудитория для проведения лекций - №3131 (24 посадочных места) Учебная лаборатория «Электротехника»: учебная мебель, доска, переносная кафедра лектора, универсальные учебно-лабораторные	1. Донецкая Народная Республика, г. Донецк,
стенды для испытания цепей постоянного и переменного трех и одно фазного тока, контрольно-измерительные приборы; универсальные	пр. Театральный, дом 28

стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине.

2. Учебные аудитории для проведения практических и лабораторных занятий:

№3131 (24 посадочных места) Учебная лаборатория «Электротехника»: учебная мебель, доска, переносная кафедра лектора, универсальные учебно-лабораторные стенды для испытания цепей постоянного и переменного трех и одно фазного тока, контрольно-измерительные приборы; универсальные стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине;

№3003в: учебная мебель, доска, переносная кафедра лектора, стенд для проведения исследований и испытаний двигателей постоянного и переменного тока, универсальный стенд для проведения лабораторных испытаний.

- 3. Учебная аудитория для проведения консультаций и экзамена №3131 (24 посадочных места) Учебная лаборатория «Электротехника»: учебная мебель, доска, переносная кафедра лектора, универсальные учебно-лабораторные стенды для испытания цепей постоянного и переменного трех и одно фазного тока, контрольно-измерительные приборы; универсальные стенды для проведения лабораторных испытаний по электронике; стенд для проведения исследований и испытаний двигателей постоянного и переменного тока; набор плакатов по дисциплине.
- 4. Читальные залы библиотеки №7301 для проведения самостоятельной работы: мебель, компьютеры с выходом в сеть Интернет, доступ к электронно-библиотечной системе, операционная система Microsoft Windows XP Professional OEM (2005 г.); Microsoft Office 2003 Standard Academic от 14.09.2005 г.; Adobe Acrobat Reader (бесплатная версия); 360 Total Security (бесплатная версия); АБИС "UniLib" (2003 г.)

- 2. Донецкая Народная Республика,
- г. Донецк,
- пр. Театральный, дом 28

- 3. Донецкая Народная Республика, г. Донецк, пр. Театральный, дом 28
- 4. Донецкая Народная Республика, г. Донецк, пр. Театральный, дом 28

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

	Turigit obout of	17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ						
№ п/п	Ф.И.О. педагогического (научно-педагогического) работника, участвующего в реализации образовательной программы	Должность, ученая степень, ученое звание	Уровень образования, наименование специальности, направления подготовки, наименование присвоенной квалификации	Сведения о дополнительном профессиональном образовании 7				
			, , ,	1				
1	Соколов Сергей Анатольевич	Должность - зав. кафедрой общеинже- нерных дисциплин; ученая степень — доктор технических наук; ученое звание — профессор	Среднее профессиональное; Электрические станции, сети и системы; Техник-электрик Высшее — специалитет; Машины и аппараты пищевых производств; Инженер-механик Диплом доктора технических наук ДД №002608	организации учебного процесса при подготовке инженернно-технических работников», 72 часа, ФГБОУ ВО "Керченский государственный морской технологический университет", г. Керчь. 2. Свидетельство о прохождении стажировки №2229/1, с 29.02.2024 по 02.03.2024. «Интеллектуальная собственность в				