Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна

ДолжностХ МоУе(б) п24чебно-методической работе

Дата подписания: 25.02.20 МИНИТСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ: b066544bae1e449cd8bfce392f7224a676a271b2

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ

имени Михаила Туган-Барановского»

кафедра холодильной и торговой техники имени Осокина В.В.

УТВЕРЖ	ДАЮ	
кафедрав. кафе	дрой ХТТ	им. Осокина В.В.
хололильной и	Dr. N	
ТОРГОВОЙ ТЕХНИКИ	alon 1	К. А. Ржесик
имени осокина 5.В.		
« <u>19</u> »	02	2024 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по учебной дисциплине

(шифр и наименование учебной дисциплины)

13.03.03 «Энергетическое машиностроение» (код и наименование направления подготовки)

Холодильные машины и установки (наименование профиля подготовки)

Разработчик:		
к.т.н., профессор	ellet.	А.Н. Бирюков
(должность)	(подпись)	(ФИО)

Оценочные материалы рассмотрены и утверждены на заседании кафедры от «19» февраля 2024 г., протокол № 24

Паспорт

оценочных материалов по учебной дисциплине

«

Перечень компетенций, формируемых в результате освоения учебной дисциплины

No	Код и наименование	Контролируемые	Этапы формирования
Π/Π	контролируемой	разделы (темы) учебной	(семестр изучения)
	компетенции	дисциплины,	
		практики*	
	ПК-9	Тема 1. Историческое развитие	
	Готов разрабатывать и	альтернативной и	
	применять	возобновляемой энергетики.	
	энергоэффективные	Содержание и задачи курса и его	
	машины, установки,	место в учебном процессе.	
	двигатели и аппараты по	Тема 2. Атомная энергетика.	
	производству,	Сущность термоядерного синтеза.	
	преобразованию и	Принципиальная схема АЭС.	
	потреблению различных	Основные типы реакторов АЭС.	
	форм энергии	Проблемы и перспективы	
		атомной энергетики.	
		Тема 3.	
		Магнитогидродинамическая	
		энергетика. Магнитная	
		гидродинамика. МГД – генератор.	
		Устройство и принцип действия.	
		Разновидности МГД генераторов.	
		Режимы работы МГД	9
1		генераторов. Принципиальная	9
1		схема электрической станции с	
		МГД генератором. Перспективы	
		магнитогидродинамической	
		энергетики.	
		Тема 4. Возобновляемая	
		энергетика. Основные понятия и	
		определения. Виды	
		нетрадиционных источников	
		возобновляемой энергии (НИВЭ).	
		Плюсы и минусы НИВЭ.	
		Проблемы и перспективы	
		развития НИВЭ.	
		Тема 5. Солнечная энергетика.	
		Способы получения	
		электрической энергии из	
		солнечного излучения.	
		Достоинства и недостатки	
		солнечной энергетики.	
		Солнечные батареи. Солнечные	

коллекторы. Солнечные генераторы. Проблемы и перспективы солнечной энергетики.

Тема 6. Ветровая энергетика. Ветровые электростанции. Технология применения ветра для выработки электрической энергии. Ветровые установки. Офшорные ветровые установки, использующие энергию ветра на расстоянии от берега и в глубинных водах. Проблемы и перспективы ветровой энергетики.

Тема 7. Биологическая энергетика. Биомасса, как производная энергии Солнца в химической форме. Химический состав биомассы. Получение электроэнергии из биомассы. Газовые турбины. Газофикация биомассы в газовых турбинах. Сжигание биомассы. Биогаз. Биогазовые энергетические установки. Проблемы и перспективы биологической энергетики.

Тема 8. Геотермальная энергетика. Геотермальная энергия как самый большой энергетический запас на планете Земля. Геотермальная электростанция (ГЭ). Принцип работы ГЭ. Основные виды ГЭ. Проблемы и перспективы геотермальной энергетики.

Тема 9. Приливная энергетика. Энергия приливов океанов. Энергия волн океанов. Тепловая энергия воды океанов. Приливная энергоустановка. Волновая энергоустановка. Использование тепловой энергии океанов для производства электрической энергии.

Показатели и критерии оценивания компетенций, описание шкал оценивания

Показатели оценивания компетенций

№ п/п	Код контролируемой компетенции	Код и наименование индикатора достижения компетенции	Контролируемые разделы (темы) учебной дисциплины, практики ¹	Наименование оценочного средства
		ПК-9.1 Способен к проведению комплексных испытаний новых технологий механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции	возобновляемой энергетики. Содержание и задачи курса и его место в учебном процессе. Тема 2. Атомная энергетика. Сущность термоядерного синтеза.	Тест, коллоквиум Тест, коллоквиум
1	ПК-9		Тема 3. Магнитогидродинамическая энергетика. Магнитная гидродинамика. МГД — генератор. Устройство и принцип действия. Разновидности МГД генераторов. Режимы работы МГД генераторов. Принципиальная схема электрической станции с МГД генератором. Перспективы магнитогидродинамической энергетики.	Тест, коллоквиум
			Тема 4. Возобновляемая энергетика. Основные понятия и определения. Виды нетрадиционных источников возобновляемой энергии (НИВЭ). Плюсы и минусы НИВЭ. Проблемы и перспективы развития НИВЭ.	Тест, коллоквиум
		функциональную,	Тема 5. Солнечная энергетика. Способы получения электрической энергии из солнечного излучения. Достоинства и недостатки солнечной	Тест, коллоквиум

№ п/п	Код контролируемой компетенции	Код и наименование индикатора достижения компетенции	Контролируемые разделы (темы) учебной дисциплины, практики ¹	Наименование оценочного средства
		механизации,	энергетики. Солнечные	
			батареи. Солнечные	
		роботизации	коллекторы. Солнечные	
		_	генераторы. Проблемы и	
		по производству	перспективы солнечной	
		пищевой продукции	энергетики.	
			Тема 6. Ветровая	
			энергетика. Ветровые	
			электростанции.	
			Технология применения	
			ветра для выработки	
			электрической энергии.	
			Ветровые установки. Офшорные ветровые	
			установки, использующие	
			энергию ветра на	
			расстоянии от берега и в	
			глубинных водах.	
			Проблемы и перспективы	
			ветровой энергетики.	
			Тема 7. Биологическая	
			энергетика. Биомасса, как	
			производная энергии	
			Солнца в химической	
			форме. Химический состав	
			биомассы. Получение	
			электроэнергии из	
			биомассы. Газовые	
			турбины. Газофикация	
			биомассы в газовых	
			турбинах. Сжигание	
			биомассы. Биогаз.	
			Биогазовые энергетические	
			установки. Проблемы и	
			перспективы биологической	
			энергетики.	
			Тема 8. Геотермальная	
			энергетика. Геотермальная	
			энергия как самый большой	
			энергетический запас на	
			планете Земля.	
			Геотермальная	
			электростанция (ГЭ).	
			Принцип работы ГЭ.	
			Основные виды ГЭ.	
			Проблемы и перспективы	
			геотермальной энергетики.	

№ п/п	Код контролируемой компетенции	Код и наименование индикатора достижения компетенции	Контролируемые разделы (темы) учебной дисциплины, практики ¹	Наименование оценочного средства
			Тема 9. Приливная энергетика. Энергия	
			приливов океанов. Энергия	
			волн океанов. Тепловая	
			энергия воды океанов.	
			Приливная	
			энергоустановка. Волновая	
			энергоустановка.	
			Использование тепловой	
			энергии океанов для	
			производства	
			электрической энергии.	

Критерии и шкала оценивания по оценочному средству тест

Шкала оценивания	Критерий оценивания		
5	Даны 9-10 правильных ответов на десять вопросов, содержащихся в билете		
4	Даны 8 правильных ответов на десять вопросов, содержащихся в билете		
3	Даны 6-7 правильных ответов на десять вопросов, содержащихся в билете		
1-2	Даны 1-5 правильных ответов на десять вопросов, содержащихся в билете		
0	Правильных ответов не дано		

Критерии и шкала оценивания по оценочному средству опрос

Шкала оценивания	Критерий оценивания
5	1. При выполнении заданий рубежного контроля выявлять верное понимание смысла учебного материала, верно формулировать выводы и обобщения. 2. Проявлять активную индивидуальную работу на занятиях.
4	1. Выполнение заданий удовлетворяет главным требованиям на оценку «отлично», но есть ошибки при их выполнении.
3	1.Выполнение заданий проходит вне графика учебного процесса.
2	1. Выполнение заданий проходит вне графика учебного процесса. 2. Студент совсем не выполнял задачи, предусмотренные учебным планом.

Перечень оценочных материалов

<u>№</u> п/п	Наименование оценочного материалов	Краткая характеристика оценочного материала	Представление оценочного материала
1	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	фонд тестовых заданий
2	Опрос	средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой учебной дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по учебной дисциплине или определенному разделу, теме, проблеме и т.п.	вопросы по темам/разделам учебной дисциплины

Фонд тестовых заданий

- 1. перспективных способов Совокупность получения, передачи И использования энергии, которые распространены не так широко, как представляют традиционные, однако интерес из-за выгодности использования и, как правило, низком риске причинения вреда окружающей среде.
- а Альтернативная энергетика
- b Ветроэнергетика
- с Биотопливо
- d Солнечная энергетика
- е Гидроэнергетика
- 2. Отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве.
- а Ветроэнергетика
- ь Альтернативная энергетика
- с Биотопливо
- d Солнечная энергетика
- е Гидроэнергетика
- 3. Топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.
- а Биотопливо

- **b** Ветроэнергетика
- с Альтернативная энергетика
- d Солнечная энергетика
- е Гидроэнергетика
- 4. Направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде.
- а Солнечная энергетика
- **b** Биотопливо
- с Ветроэнергетика
- d Альтернативная энергетика
- е Гидроэнергетика
- 5. Область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования энергии водного потока в электрическую энергию.
- а Гидроэнергетика
- **b** Солнечная энергетика
- с Биотопливо
- d Ветроэнергетика
- е Альтернативная энергетика
- 6. Направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях.
- а Геотермальная энергетика
- ь Грозовая энергетика
- с Управляемый термоядерный синтез
- d Распределённое производство энергии
- е Водородная энергетика
- 7. Способ получения энергии путём поимки и перенаправления энергии молний в электросеть.
- а Грозовая энергетика
- ь Геотермальная энергетика
- с Управляемый термоядерный синтез
- d Распределённое производство энергии
- е Водородная энергетика
- 8. Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер.

- а Управляемый термоядерный синтез
- ь Геотермальная энергетика
- с Грозовая энергетика
- d Распределённое производство энергии
- е Водородная энергетика
- 9. Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.
- а Распределённое производство энергии
- b Геотермальная энергетика
- с Грозовая энергетика
- d Управляемый термоядерный синтез
- е Водородная энергетика
- 10. Отрасль энергетики, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми.
- а Водородная энергетика
- ь Геотермальная энергетика
- с Грозовая энергетика
- d Управляемый термоядерный синтез
- е Распределённое производство энергии
- 11. Устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим ее преобразованием в электрическую энергию.
- а. Ветрогенератор.
- b. Ветряная электростанция.
- с. Наземная ветряная электростанция.
- d. Прибрежная ветряная электростанция.
- е. Шельфовая ветряная электростанция.
- 12. Несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть.
- а. Ветряная электростанция.
- b. Ветрогенератор.
- с. Наземная ветряная электростанция.
- d. Прибрежная ветряная электростанция.
- е. Шельфовая ветряная электростанция.
- 13. Тип ветряных электростанций, ветрогенераторы которых устанавливаются на холмах или возвышенностях.

- а. Наземная ветряная электростанция.
- b. Ветрогенератор.
- с. Ветряная электростанция.
- d. Прибрежная ветряная электростанция.
- е. Шельфовая ветряная электростанция.
- 14. Тип ветряных электростанций, ветрогенераторы которых устанавливаются на небольшом удалении от берега моря или океана.
- а. Прибрежная ветряная электростанция.
- b. Ветрогенератор.
- с. Ветряная электростанция.
- d. Наземная ветряная электростанция.
- е. Шельфовая ветряная электростанция.
- 15. Тип ветряных электростанций, ветрогенераторы которых устанавливаются в море, 10—60 километров от берега.
- а. Шельфовая ветряная электростанция.
- b. Ветрогенератор.
- с. Ветряная электростанция.
- d. Наземная ветряная электростанция.
- е. Прибрежная ветряная электростанция.
- 16. Получение электроэнергии с помощью фотоэлементов.
- а. Фотовольтаика.
- b. Гелиотермальная энергетика.
- с. Двигатель Стирлинга
- d. Солнечный коллектор
- е. Солнечный водонагреватель
- 17. Нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла.
- а. Гелиотермальная энергетика.
- b. Фотовольтаика.
- с. Двигатель Стирлинга
- d. Солнечный коллектор
- е. Солнечный водонагреватель
- 18. Тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания.
- а. Двигатель Стирлинга

- b. Фотовольтаика.
- с. Гелиотермальная энергетика.
- d. Солнечный коллектор
- е. Солнечный водонагреватель
- 19. Устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением.
- а. Солнечный коллектор
- b. Фотовольтаика.
- с. Гелиотермальная энергетика.
- d. Двигатель Стирлинга
- е. Солнечный водонагреватель
- 20. Разновидность солнечного коллектора, предназначен для производства горячей воды путём поглощения солнечного излучения, преобразования его в тепло, аккумуляции и передачи потребителю.
- а. Солнечный водонагреватель
- b. Фотовольтаика.
- с. Гелиотермальная энергетика.
- d. Двигатель Стирлинга
- е. Солнечный коллектор
- 21. Полная энергия ветрового потока какой-либо местности на определенной высоте над поверхностью земли.
- а. Ветровой потенциал.
- b. Валовой потенциал.
- с. Технический потенциал.
- d. Экономический потенциал.
- е. Ветровой кадастр.
- 22. Энергетический эквивалент ветрового потока какой-либо местности на определенной высоте над поверхностью земли.
- а. Валовой потенциал.
- b. Ветровой потенциал.
- с. Технический потенциал.
- d. Экономический потенциал.
- е. Ветровой кадастр.
- 23. Часть валового потенциала, которая может быть полезно использована с помощью современного ветроэнергетического оборудования с учетом требований социально-экологического характера.

- а. Технический потенциал.
- b. Ветровой потенциал.
- с. Валовой потенциал.
- d. Экономический потенциал.
- е. Ветровой кадастр.
- 24. Часть технического потенциала, использование которого экономически эффективно в современных условиях с учетом требований социально-экономического характера.
- а. Экономический потенциал.
- b. Ветровой потенциал.
- с. Валовой потенциал.
- d. Технический потенциал.
- е. Ветровой кадастр.
- 25. Систематизированный свод сведений, характеризующий ветровые условия местности и дающий возможность количественной оценки энергии ветра и расчета ожидаемой выработки ветроэнергетическими установками.
- а. Ветровой кадастр.
- b. Ветровой потенциал.
- с. Валовой потенциал.
- d. Технический потенциал.
- е. Экономический потенциал.
- 26. Электростанция, предназначенная для преобразования энергии солнечного излучения в электрическую энергию.
- а Солнечная электростанция.
- b Солнечно-топливная электростанция.
- с Солнечное теплоснабжение.
- d Солнечное горячее водоснабжение.
- е Солнечное охлаждение.
- 27. Электростанция, преобразующая по единой технологической схеме энергию солнечного излучения и химическую энергию топлива в электрическую и тепловую энергию.
- а Солнечно-топливная электростанция.
- b Солнечная электростанция.
- с Солнечное теплоснабжение.
- d Солнечное горячее водоснабжение.
- е Солнечное охлаждение.

- 28. Использование энергии солнечного излучения для отопления, горячего водоснабжения и обеспечения технологических нужд различных потребителей.
- а Солнечное теплоснабжение.
- b Солнечная электростанция.
- с Солнечно-топливная электростанция.
- d Солнечное горячее водоснабжение.
- е Солнечное охлаждение.
- 29. Использование энергии солнечного излучения для нагрева воды с целью обеспечения коммунально-бытовых и технологических нужд различных потребителей.
- а Солнечное горячее водоснабжение.
- ь Солнечная электростанция.
- с Солнечно-топливная электростанция.
- d Солнечное теплоснабжение.
- е Солнечное охлаждение.
- 30. Использование энергии солнечного излучения для получения холода с целью кондиционирования воздуха, хранения продуктов и т.п.
- а Солнечное охлаждение.
- b Солнечная электростанция.
- с Солнечно-топливная электростанция.
- d Солнечное теплоснабжение.
- е Солнечное горячее водоснабжение.
- 31. Преобразователь энергии солнечного излучения в электрическую энергию, выполненный на основе различных физических принципов прямого преобразования.
- а Солнечный элемент.
- b Солнечный фотоэлектрический элемент.
- с Двусторонний солнечный элемент.
- d Термоэлектрический солнечный элемент.
- е Термоэлектронный солнечный преобразователь.
- 32. Солнечный элемент на основе фотоэффекта.
- а Солнечный фотоэлектрический элемент.
- b Солнечный элемент.
- с Двусторонний солнечный элемент.
- d Термоэлектрический солнечный элемент.
- е Термоэлектронный солнечный преобразователь.

- 33. Солнечный элемент с двусторонней фоточувствительностью.
- а Двусторонний солнечный элемент.
- b Солнечный элемент.
- с Солнечный фотоэлектрический элемент.
- d Термоэлектрический солнечный элемент.
- е Термоэлектронный солнечный преобразователь.
- 34. Солнечный элемент на основе термоэлектрических явлений, в котором источником тепла является энергия солнечного излучения.
- а Термоэлектрический солнечный элемент.
- b Солнечный элемент.
- с Солнечный фотоэлектрический элемент.
- d Двусторонний солнечный элемент.
- е Термоэлектронный солнечный преобразователь.
- 35. Солнечный преобразователь на основе явления термоэлектронной эмиссии, в котором источником тепла является энергия солнечного излучения.
- а Термоэлектронный солнечный преобразователь.
- b Солнечный элемент.
- с Солнечный фотоэлектрический элемент.
- d Двусторонний солнечный элемент.
- е Термоэлектрический солнечный элемент.
- 36. Солнечная электростанция, в которой энергия солнечного излучения используется как источник тепла в термодинамическом цикле преобразования тепловой энергии в механическую, а затем в электрическую.
- а Термодинамическая солнечная электростанция.
- ь Фотоэлектрическая солнечная электростанция.
- с Башенная солнечная электростанция.
- d Двухконтурная солнечная электростанция.
- е Модульная солнечная электростанция.
- 37. Солнечная электростанция, в которой используется способ прямого преобразования энергии солнечного излучения в электрическую энергию.
- а Фотоэлектрическая солнечная электростанция.
- ь Термодинамическая солнечная электростанция.
- с Башенная солнечная электростанция.
- d Двухконтурная солнечная электростанция.
- е Модульная солнечная электростанция.

- 38. Солнечная электростанция, в которой излучение от оптической концентрирующей системы, образованной полем гелиостатов, направляется на установленный на башне приемник энергии солнечного излучения.
- а Башенная солнечная электростанция.
- ь Термодинамическая солнечная электростанция.
- с Фотоэлектрическая солнечная электростанция.
- d Двухконтурная солнечная электростанция.
- е Модульная солнечная электростанция.
- 39. Термодинамическая солнечная электростанция, в которой энергия солнечного излучения, поглощенная теплоносителем в первом контуре, передается через теплообменник теплоносителю второго контура.
- а Двухконтурная солнечная электростанция.
- b Термодинамическая солнечная электростанция.
- с Фотоэлектрическая солнечная электростанция.
- d Башенная солнечная электростанция.
- е Модульная солнечная электростанция.
- 40. Солнечная электростанция, состоящая из повторяющихся конструктивных элементов-модулей, содержащих однотипные концентраторы и приемники энергии солнечного излучения.
- а Модульная солнечная электростанция.
- ь Термодинамическая солнечная электростанция.
- с Фотоэлектрическая солнечная электростанция.
- d Башенная солнечная электростанция.
- е Двухконтурная солнечная электростанция.
- 41. Приемник солнечного излучения, поглощающая поверхность которого находится в вакуумированном пространстве, ограниченном прозрачной оболочкой.
- а Вакуумированный приемник.
- b Центральный приемник.
- с Полостной приемник солнечного излучения.
- d Солнечный парогенератор.
- е Солнечный экономайзер.
- 42. Приемник солнечного излучения в башенной солнечной электростанции.
- а Центральный приемник.

- в Вакуумированный приемник.
- с Полостной приемник солнечного излучения.
- d Солнечный парогенератор.
- е Солнечный экономайзер.
- 43. Приемник солнечного излучения, тепловоспринимающая поверхность которого имеет форму полости различной конфигурации.
- а Полостной приемник солнечного излучения.
- в Вакуумированный приемник.
- с Центральный приемник.
- d Солнечный парогенератор.
- е Солнечный экономайзер.
- 44. Элемент термодинамических солнечных электростанций, в котором происходит генерация пара.
- а Солнечный парогенератор.
- в Вакуумированный приемник.
- с Центральный приемник.
- d Полостной приемник солнечного излучения.
- е Солнечный экономайзер.
- 45. Элемент термодинамических солнечных электростанций, в котором происходит предварительный нагрев теплоносителя перед его поступлением в солнечный парогенератор.
- а Солнечный экономайзер.
- b Вакуумированный приемник.
- с Центральный приемник.
- d Полостной приемник солнечного излучения.
- е Солнечный парогенератор.

Вопросы по темам/разделам учебной дисциплины

- 1. Какие виды энергии получают от возобновляемых источников?
- 2. Каковы особенности возобновляемых источников энергии по сравнению с традиционными, не возобновляемыми?
- 3.Перечислите нетрадиционные возобновляемые источники энергии, которые могут иметь практическое значение для Республики Беларусь.
- 4. Назовите известные Вам энергетические способы переработки биомассы.
- 5. Дайте определение понятию «искусственная энергетическая плантация».
- 6.Перечислите термохимические методы переработки биомассы.

- 7. Изобразите схему промышленного газогенератора.
- 8. Перечислите биохимические методы переработки биомассы.
- 9.Изобразите схему установки для промышленной переработки отходов животноводства.
- 10.Перечислите известные Вам агрохимические методы переработки биомассы.
- 11.Охарактеризуйте возможности использования ветроэнергетических ресурсов в Республике.
- 12. Классифицируйте ВЭС по типу исполнения и ориентации ветровых колес
- 13. Перечислите направления использования солнечной энергии.
- 14.Опишите системы использования солнечной энергии для горячего водоснабжения.
- 15. Дайте определение понятиям «активного и пассивного водоснабжения».
- 16. Изобразите схему воздушной системы солнечного отопления.
- 17.Опишите способы использования солнечной энергии для выработки электроэнергии.
- 18.Охарактеризуйте возможности использования геотермальных ресурсов и тверд ых бытовых отходов в Республике.
- 19. Назовите известные Вам критерии выбора места расположения электростанций.
- 20. Как осуществляется транспорт нефти и нефтепродуктов?
- 21. Как осуществляется транспорт угля?
- 22. Как осуществляется транспорт газа?
- 23.Из каких основных элементов состоит система теплоснабжения?
- 24.С помощью чего осуществляется транспорт теплоты?
- 25. Какие материалы используются для тепловой изоляции трубопроводов?
- 26.Перечислите известные Вам способы прокладки трубопроводов?
- 27. Дайте определение понятию «ПИ -труба».
- 28.От чего зависят потери тепла при транспортировке теплоты?
- 29.От чего зависит линейный коэффициент теплопередачи через многослойную стенку?
- 30. Какие мероприятия применяют для уменьшения потерь теплоты в окружающую среду при транспортировке теплоносителя?
- 31. Дайте определение понятию «теплоноситель».
- 32. Какими требованиями должен обладать идеальный теплоноситель и чем они обусловлены?
- 33.Охарактеризуйте воду и водяной пар, как теплоносители.
- 34. Дайте характеристику горячему воздуху и топочным газам, как теплоносителям.
- 35. Для чего используются высокотемпературные теплоносители?
- 36.Какое оборудование производящее и распределяющее

электроэнергию Вам известно?

- 37.Определите понятие «электрическая сеть».
- 38. Как определить величину потерь при передаче электроэнергии?
- 39.Охарактеризуйте основные тенденции и особенности в области энергосбережения в зарубежных государствах.
- 40. Какова роль государственного регулирования в области энергосбережения за рубежом?
- 41. Каковы особенности энергетического менеджмента в промышленности, строительстве, на транспорте в зарубежных странах?
- 42.Охарактеризуйте механизмы стимулирования внедрения возобновляемых источников энергии за рубежом.
- 43. Каковы направления реализации политики энергосбережения в США?
- 44. Каковы направления реализации политики энергосбережения в Японии?
- 44. Каковы механизмы реализации энергосберегающей политики в Дании.
- 45. Основные рабочие тела тепловых насосов.
- 46. Эксергия термодинамической системы.
- 47.Основные принципы эксергетического анализа термодинамических систем.
- 48. Энергетический и эксергетический баланс.
- 49. Коэффициент преобразования теплоты (СОР) теплового насоса.
- 50. Энергетический и эксергетический КПД теплового насоса.
- 51. Термодинамический и эксергетический анализ цикла теплового насоса.
- 52.Общая характеристика вторичных энергоресурсов.
- 53.Схема и цикл каскадной теплонасосной установки.
- 54.Схема и цикл двухступенчатой теплонасосной установки.
- 55.Схема последовательного соединения тепловых насосов и их цикл.
- 56.Схема и цикл углекислотной установки для совместной выработки теплоты и холода.
- 57.Схема теплонасосной установки для кондиционирования воздуха.
- 58.Схема теплонасосной установки для охлаждения воды и теплоснабжения.

РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

	Текущее тестирование и самостоятельная работа					Итого текущий контроль, балл	Итоговый контроль	Сумма, балл			
CM	иысл	овой № 1	моду	ЛЬ	Смысловой модуль № 2					(экзамен), балл	
T1	T2	T3	T4	T5	T6	T7	T8	T9	40	60	100
4	4	4	4	4	5	5	5	5			

Примечание. Т1, Т2, ... Т4 – номера тем соответствующих смысловых модулей

Соответствие государственной шкалы оценивания академической успеваемости

Сумма баллов за	По государственной	Определение
все виды учебной	шкале	
деятельности		
90-100	«Отлично» (5)	отлично – отличное выполнение с
		незначительным количеством неточностей
80-89	«Хорошо» (4)	хорошо – в целом правильно выполненная
		работа с незначительным количеством
		ошибок (до 10 %)
75-79		хорошо – в целом правильно выполненная
		работа с незначительным количеством
		ошибок (до 15 %)
70-74	«Удовлетворительно» (3)	удовлетворительно – неплохо,
		но со значительным количеством
		недостатков
60-69		удовлетворительно – выполнение
		удовлетворяет минимальные критерии
35-59	«Неудовлетворительно»	неудовлетворительно –
	(2)	с возможностью повторной аттестации
0-34		неудовлетворительно –
		с обязательным повторным изучением
		дисциплины (выставляется комиссией)

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков

Методика оценивания текущего контроля знаний

Текущий контроль осуществляется посредством подведения итогов трех контролей и результатов лабораторных работ, что составляет (максимально) 40 % накопительных баллов по курсу.

Теоретическая часть материала оценивается на модульном контроле. Каждый билет содержит 10 тестовых вопросов, относящихся к изученному модулю.

Практическая составляющая курса также оценивается при помощи билетов, содержащих 10 тестовых вопросов.

Проверка билетов (как модульных, так и практических) производится непосредственно в аудитории, по ключам к билетам, в присутствии студентов.

После оглашения оценок (по желанию студентов) ответы вместе с билетами выдаются студентам для ознакомления с ошибками.

Методика промежуточной аттестации (экзамена)

Экзамен по дисциплине проводится в качестве промежуточной аттестации для определения степени достижения учебных целей по учебной дисциплине.

Целью экзамена является выявить и оценить теоретические знания и практические навыки студента в общей программе изучения учебной дисциплины «Альтернативная энергетика».

Студент допускаются к сдаче экзамена только после выполнения трех модульных контролей (в виде тестовых заданий), практических работ, предусмотренных программой, в совокупности это составляет доэкзаменационный рейтинг, т.е. максимум 40% от общего бала. На первый модуль приходится 10 баллов, а на второй и третий по 15 баллов. В случае несвоевременного выполнения студентом графика учебного процесса, у него есть возможность досдачи учебного материала, что даст ему дополнительные балы, входящие в доэкзаменационный рейтинг.

Вопросы, выносимые на экзамен, выдаются студентам не менее чем за два месяца до экзамена.

В период подготовки к экзамену проводятся консультации в соответствии с графиком консультаций и расписанием занятий. Во время консультаций преподаватель информирует студента о содержании экзамена и порядке его сдачи, отвечает на вопросы, доводит перечень нормативной и справочной литературы, которой может пользоваться студент при решении задач.

Экзамен принимается по билетам в часы и аудитории, предусмотренные расписанием. На экзамене студент получает экзаменационный билет, содержащий три теоретических вопроса.

Во время экзамена общее число студентов в аудитории не превышает пяти человек, а преподавателей минимум двое.

Общая оценка студенту объявляется сразу же после проверки ответов на вопросы экзаменационных билетов. По результатам экзамена студент получает оценку исходя из оставшихся 60 % накопительных балов.