Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна

Должность: Проректор по учебно-методической работе

Дата подписания: 27.10.2025 13:41:30 Уникальный программный ключ. b066544bae1e449cd8bfce392f7224a676a271b2 **РОСС**ИЙСКОЙ ФЕДЕРАЦИИ

> ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

КАФЕДРА ОБЩЕИНЖЕНЕРНЫХ ДИСЦИПЛИН

УТВЕРЖДАЮ:

Заведующий кафедрой общеинженерных

КАФЕДРА ОБЩЕИНЖЕНЕРНЫХ **ДИСЦИПЛИН**

С. А. Соколов

(подпись)

11/1/ W 02

2025 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «АВТОМТИЗАЦИЯ ПРОЦЕСОВ ПИЩЕВЫХ ПРОИЗВОДСТВ»

Укрупненная группа направлений подготовки: 15.00.00 Машиностроение (код, наименование)

Программа высшего образования: программа баклавриата

Направление подготовки: 15.03.02. Технологические машины и оборудование

Профиль: Инженерия технических систем пишевой промышленности

(наименование) Bount

Разработчик: старший преподаватель

В.П. Головинов

ОМ рассмотрены и утверждены на заседании кафедры от «/+» од 2025г.,

протокол № 12

Донецк 2025

1. Паспорт

оценочных материалов по учебной дисциплине «АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ПИЩЕВЫХ ПРОИЗВОДСТВ»

Перечень компетенций, формируемых в результате освоения учебной дисциплины

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые разделы (темы) учебной дисциплины (модуля)	Наименование оценочного материала
1	2	3	4	5
1		процессов механизации, автоматизации и роботизации автоматизированных технологических линий по производству пищевой продукции	Тема 2. Функциональные схемы систем автоматического контроля (САК) и систем автоматического регулирования (САР). Тема 3. Релейно-контактные схемы управления. Принцип разработки релейно-контактных схем.	Текущий модульный контроль, защита работ практикума реферат (для инд.заданий)
2			приктикуми	

2. Показатели и критерии оценивания компетенций, описание шкал оценивания Таблица 2.1 — Показатели оценивания компетенций

	тца ∠. т	показатели оценивания компетенции		
№ п/п	Код контролируемой компетенции	Показатель оценивания (знания, умения, навыки)	Контролируемые разделы (темы) учебной дисциплины (модуля)	Наименование оценочного материала
1	2	3	4	5
1	ПК-1	Знать:	Тема 1. Основные сведения об автоматических	Защита отчетов
		- основные задачи и методологию изучения дисциплины	системах.	работ практикума
		«Автоматизация процессов пищевых производств»;	Тема 2. Функциональные схемы систем	
		Уметь:	автоматического контроля (САК) и систем	Выполнение и
		- самостоятельно ставить цель исследования и выбирать	автоматического регулирования (САР). Правило	защита заданий
		· ·	разработки функциональных схем.	для
		- применять теоретические положения курса	Тема 3. Релейно-контактные схемы управления.	самостоятельной
			Принцип разработки релейно-контактных схем.	работы
		профессиональной деятельности;	Тема 4. Автоматизация технологического оборудования	
		Владеть:	отрасли.	Тестирование
		1 ' 1	Далее - Опрос и/ или тестирование по	(опрос,
			теоретической части курса	коллоквиум,
			Римоличича оформации и замина паба	контрольная работа)
			Выполнение, оформление и защита работ практикума	ρασστα
	1		upumininymu	

1	2	3	4	5
2	ПК-1	Знать:	•	Защита
		- основные термины, определения и понятия, относящиеся к	Тема 5. Первичные измерительные преобразователи.	отчетов
		автоматизации процессов пищевых производств;	Классификация.	работ
		- основные источники информации в сфере автоматизации	Тема 6. Электронные измерительные системы.	практикума
		процессов пищевых производств;	Тема 7. Промышленные регуляторы.	
			Тема 8. Магнитные усилители.	Выполнение
		- использовать полученные знания при решении практических	Тема 9. Исполнительные блоки.	и защита
		вопросов;	Опрос и/ или тестирование по теоретической	заданий для
		- анализировать и разрабатывать простые схемы управления	части курса	самостоятель
		производственными процессами;	Выполнение, оформление и защита работ	ной работы
		Владеть:	практикума	
		- пониманием сущности и значения информации, полученной в		Тестирование
		курсе «Автоматизация процессов пищевых производств» в		(опрос,
		развитии современного общества и на предприятиях пищевой		коллоквиум,
		промышленности в частности;		контрольная
		- способностью получать и обрабатывать информацию из		работа)
		различных источников;		
		- готовностью интерпретировать, структурировать и оформлять		
		информацию в доступном для других виде		

Таблица 2.2 – Критерии и шкала оценивания по оценочному материалу <u>«Задания для</u>

самостоятельной работы (реферат)»

	tunicoloni cui cui cui cui cui cui cui cui cui cu		
Шкала оценивания	Критерий оценивания		
0,91 балл, выделенный на	Реферат представлен на высоком уровне		
тему, которая	(полное соответствие требованиям наличия элементов научного		
отрабатывается в виде	творчества, самостоятельных выводов, аргументированной		
реферата	критики и самостоятельного анализа фактического материала на		
	основе глубоких знаний информационных источников по данной		
	теме).		
0,750,89·балл,	Реферат представлен на среднем уровне		
выделенный на тему,	(малодоказательные отдельные критерии при общей полноте		
которая отрабатывается в	раскрытия темы).		
виде реферата			
0,60,74 балл, выделенный	Реферат представлен на низком уровне		
на тему, которая	(правильно, но неполно, без иллюстраций, освещены основные		
отрабатывается в виде	вопросы темы и содержатся отдельные ошибочные положения).		
реферата			
0	Реферат представлен на неудовлетворительном уровне или не		
	представлен (студент не готов, не выполнил задание и т.п.)		

Таблица 2.3 – Критерии и шкала оценивания по оценочному материалу «Тест»

	<u> </u>		
Шкала оценивания	Критерий оценивания		
0,91 балл, выделенный на	сесты выполнены на высоком уровне (правильные ответы даны н		
тест к модулю	90-100% вопросов)		
0,750,89·балл, выделенный на тест к модулю	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% вопросов)		
0,60,74·балл, выделенный	Тесты выполнены на низком уровне (правильные ответы даны на		
на тест к модулю	60-74% вопросов)		
0	Тесты выполнены на неудовлетворительном уровне		
	(правильные ответы даны менее чем 60%)		

Таблица 2.4 — Критерии и шкала оценивания по оценочному материалу <u>«Отчет по работам</u>

практикума»

<u>iipukiiikymu//</u>					
Шкала оценивания	Критерии оценивания				
0,91 балл,	Отчет представлен на высоком уровне (студент полно осветил				
выделенный на тему	рассматриваемую проблематику, привел схемы используемой техники,				
	расчеты, сделал выводы о проделанной работе).				
0,750,89-балл,	Отчет представлен на среднем уровне (студент в целом осветил				
выделенный на тему рассматриваемую проблематику, привел схемы используемой те					
	расчеты, сделал выводы о проделанной работе, допустив некоторые				
	неточности и т.п.)				
0,60,74-балл,	Отчет представлен на низком уровне (студент допустил существенные				
выделенный на тему	неточности, изложил материал с ошибками, не владеет в достаточной				
	степени профильным категориальным аппаратом и т.п.)				
0	Отчет представлен на неудовлетворительном уровне или не представлен				
	(студент не готов, не выполнил задание и т.п.)				

Таблица 2.5 – Критерии и шкала оценивания по оценочному материалу «Контрольная работа» (для студентов з.ф.о. или студентов, работающих по индивидуальному графику)

Шкала оценивания	Критерий оценивания
15-20	Контрольная работа выполнена на высоком уровне
13-20	(правильные ответы даны на 90-100% вопросов/задач)
11-14,9	Контрольная работа выполнена на среднем уровне
11-14,9	(правильные ответы даны на 75-89% вопросов/задач)
5-10,9	Контрольная работа выполнена на низком уровне
3-10,9	(правильные ответы даны на 60-74% вопросов/задач)
0	Контрольная работа выполнена на неудовлетворительном уровне
U	(правильные ответы даны менее чем 60%)

Таблица 2.6 – Критерии и шкала оценивания по оценочному материалу «Собеседование» («Устный опрос» или «Доклад»)

Шкала оценивания	Критерии оценивания
0,91-балл,	Собеседование (доклад) с обучающимся (обучающегося) на темы,
выделенный на тему	связанные с изучаемой учебной дисциплиной, и выяснение высокого
	объема знаний обучающегося по учебной дисциплине, определенному
	разделу, теме, проблеме и т.п.
0,750,89-балл,	Собеседование (доклад) с обучающимся (обучающегося) на темы,
выделенный на тему	связанные с изучаемой учебной дисциплиной, и выяснение среднего
	объема знаний обучающегося по учебной дисциплине, определенному
	разделу, теме, проблеме и т.п. (студент в целом осветил рассматриваемую
	проблематику, допустив некоторые неточности и т.п.)
	Собеседование (доклад) с обучающимся (обучающегося) на темы,
	связанные с изучаемой учебной дисциплиной, и выяснение низкого
	уровне знаний обучающегося по учебной дисциплине, определенному
	разделу, теме, проблеме и т.п. (студент допустил существенные
	неточности, изложил материал с ошибками и т.п.)
	При собеседовании (докладе) с обучающимся (обучающегося) выявлен
	объем знаний на неудовлетворительном уровне (студент не готов)

Примечание:

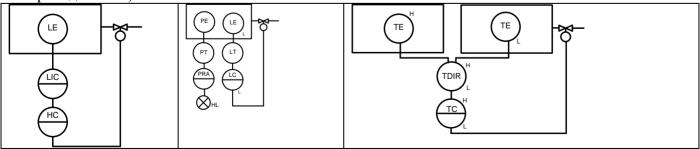
- 1. Конкретные баллы на отдельные виды работ (тема, тестирование, лабораторная или практическая работа) указаны в рабочей программе учебной дисциплины на учебный год.
- 2. Баллы могут отличаться для очной и заочной форм обучения, конкретной темы, лабораторной работы или теста к содержательному модулю.

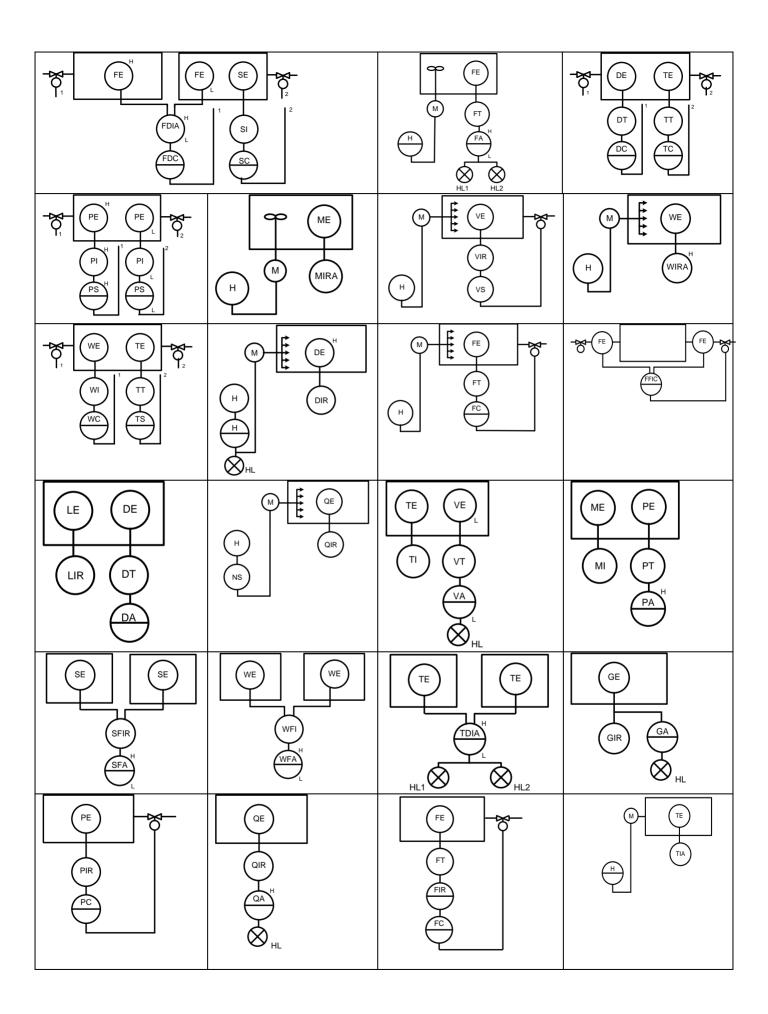
3. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

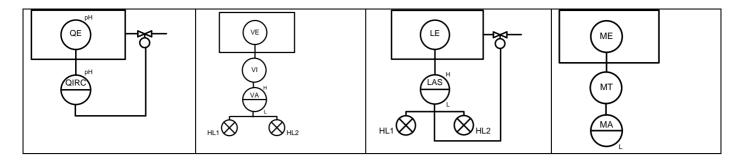
Таблица 3.1 - Перечень оценочных материалов

		be tend offeno mark marephanos	
$N_{\underline{0}}$	Наименование	Краткая характеристика оценочного материала	Представление
Π/Π	оценочного		оценочного
	материала		материала
1	Отчет по	Продукт самостоятельной работы студента,	Оформление
	работам	представляющий собой краткое изложение в	отчета по
	практикума	письменном виде полученных результатов	лабораторным и
		экспериментальных или теоретических	практическим
		исследований по определенной научной (учебно-	работам согласно
		исследовательской) теме,	требованиям,
		где автор раскрывает суть исследуемой	изложенным в
		проблемы, приводит различные точки зрения,	практикуме
	Dahaman	а также собственные взгляды на нее.	(тетрадь)
	Реферат		
			Реферат
			(формат А4)
2	Тесты	система стандартизированных заданий,	Фонд тестовых
		позволяющая автоматизировать процедуру	заданий
		измерения уровня знаний и умений	
		обучающегося.	
3	Контрольная	средство проверки умений применять	Комплект
	работа	полученные знания для решения задач	контрольных
		определенного типа по теме, разделу или	заданий по
		учебной дисциплине.	вариантам
			(методические
			указания к СРС)
4	Собеседование	продукт самостоятельной работы обучающегося,	Темы курса
	(Устный опрос)	представляющий собой публичное выступление	
		по представлению полученных	
		результатов решения определенной учебно-	
	Доклад	практической, учебно-исследовательской или	Темы докладов
		научной темы	

Примечание:


- 1. Конкретные баллы на отдельные виды работ (тема, тестирование, лабораторная или практическая работа) указаны в рабочей программе учебной дисциплины на учебный год.
- 2. Баллы могут отличаться для очной и заочной форм обучения, конкретной темы, лабораторной работы или теста к содержательному модулю.


3.1 ОЦЕНОЧНЫЙ МАТЕРИАЛ «ЗАДАНИЯ НА «КОНТРОЛЬНУЮ РАБОТУ»


- 1. Перечень первых заданий контрольной работы:
- 2. Пояснить работу принципиальной электрической схемы фритюрницы ФЭСМ-20
- 3. Пояснить работу принципиальной электрической схемы кипятильника КНЭ-50
- 4. Пояснить работу системы защиты от «сухого хода» принципиальной электрической схемы *пищеварочного котла КПЭСМ-60*.
- 5. Пояснить работу принципиальной электрической схемы жаровни *ЖВЭ-720 при* достижении заданной температуры жарочного барабана 160°C.
- 6. Пояснить работу принципиальной электрической схемы мармита МСЭСМ-60.
- 7. Пояснить работу принципиальной электрической схемы котла типа КЭ-250 при достижении давления пара в пароводяной рубашке верхнего заданного предела.
- 8. Пояснить работу принципиальной электрической схемы водонагревателя НЭ-1Б.
- 9. Пояснить работу принципиальной электрической схемы сковороды СЭ-0,45.
- 10. Пояснить работу принципиальной электрической схемы сковороды СЭСМ-0,2 при достижении пода сковороды заданного значения.
- 11. Пояснить работу принципиальной электрической схемы автомата для формовки пончиков $A\Pi$ -3M при включении автоматических выключателей QF1 и QF2.
- 12. Пояснить работу принципиальной электрической схемы *пищеварочного котпа КПЭСМ*-60, если давление в пароводяной рубашке достигнет верхнего заданного значения. Как в этом случае включатся ТЭНы?
- 13. Пояснить работу принципиальной электрической схемы жаровни ЖВЭ-720
- 14. Пояснить работу принципиальной электрической схемы *котла типа КЭ-250* при падении избыточного давления пара в пароводяной рубашке до нижнего заданного предела. Поясните систему управления механизмом опрокидывания чаши электрической *сковороды СЭ-0,45*.
- 15. Пояснить работу принципиальной электрической схемы сковороды СЭСМ-0,2 при понижении температуры пода сковороды на величину дифференциала терморегулятора
- 16. Пояснить работу принципиальной электрической схемы *автомата АП-3М* при достижении температуры масла в жарочной ванне верхнего предела 190°C.
- 17. Пояснить работу принципиальной электрической схемы *фритюрницы ФЭСМ-20*, если при остывании фритюра контакт ВК2 замкнут, а ВК1 разомкнут?
- 18. Пояснить работу принципиальной электрической схемы *котла КПЭСМ-60* в случае, если катушка магнитного пускателя КМ1 обесточена, а КМ2 запитана. Как в этом случае включатся ТЭНы?
- 19. Пояснить работу принципиальной электрической схемы пекарного шкафа ШПЭСМ-3.

Перечень вторых заданий контрольной работы:

1. Расшифровать функциональную схему автоматизации (схема выбирается по заданию преподавателя):

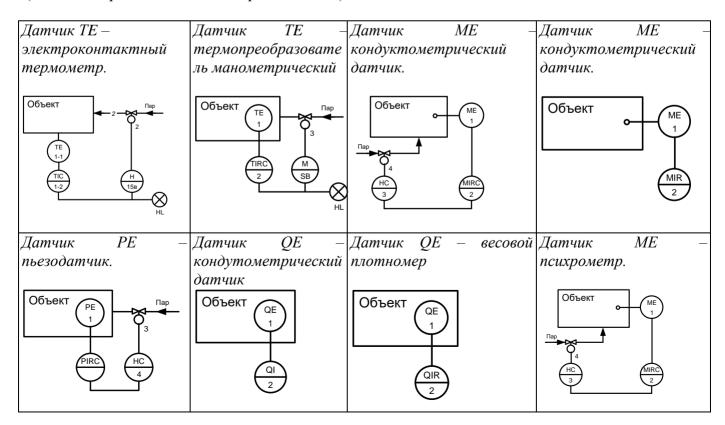
2. Разработать функциональную схему автоматизации

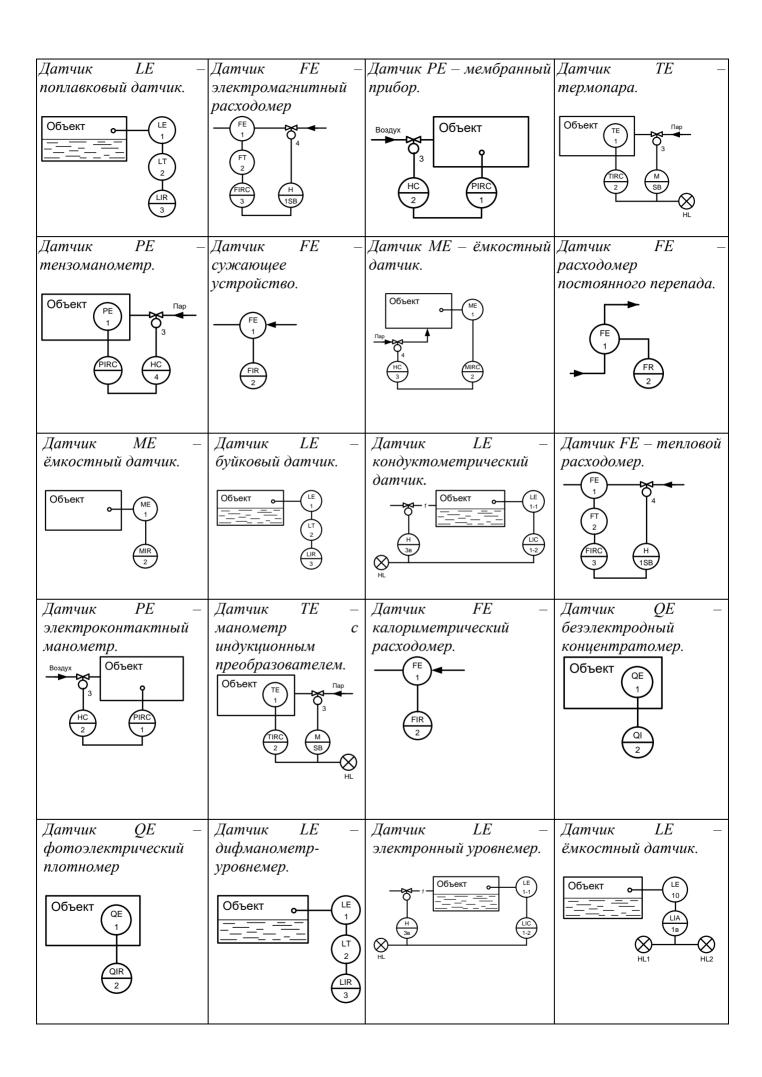
2.1 Разработать функциональную схему автоматического регулирования подачи воздуха в сушильную камеру.

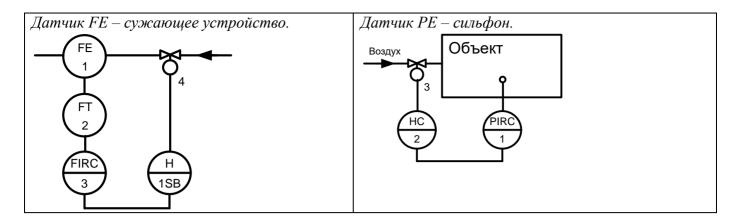
Обеспечить выдержку времени подачи воздуха в течение 20 мин. При включении вентилятора обеспечить световую сигнализацию. Системой предусмотреть возможность операторного управления вентилятором.

- 2.2 Разработать функциональную схему автоматизации системы смешивания двух продуктов. Качество смеси зависит от расхода этих продуктов. Обеспечить визуальный контроль и регистрацию соотношения расходов продуктов. Предусмотреть контроль концентрации смеси, при достижении минимального и максимального значений концентрации обеспечить световую сигнализацию.
- 2.3 Разработать функциональную схему автоматизации процесса присыпки конфет вафельной стружкой. Схема включает питатель с вафельной стружкой и ленточный конвейер с конфетами. Обеспечить автоматический контроль уровня вафельной стружки в питателе. Пуск электродвигателя конвейера с конфетами сигнализируется лампой.
- 2.4 Обеспечить автоматический контроль и защиту от перелива фруктового сока в сборнике. Верхнее значение уровня сока сигнализируется лампой. Предусмотреть дистанционное операторное управление подачей сока.
- 2.5 Разработать функциональную схему автоматического регулирования прогрева воздуха в помещении. Воздух прогревается с помощью теплового вентилятора. При включении вентилятора обеспечить нагрев воздуха до 20^{0} C.
- 2.6 Разработать функциональную схему автоматического управления процессом нагревания желейной массы в темперосборнике. При максимальной температуре, равной 60^{0} С, вступает в действие система регулирования температуры. Обеспечить сигнализацию максимального значения температуры.
- 2.7 Разработать функциональную схему автоматического регулирования давления конденсации холодильной машины с водяным охлаждением конденсатора. Система управления сводится к уменьшению подачи воды в конденсатор с помощью водорегулирующего вентиля.
- 2.8 Разработать функциональную схему автоматического регулирования температуры напитка в кофеварке. Кофеварка снабжена терморегулятором, который автоматически поддерживает напиток в горячем состоянии. Конструкцией аппарата предусмотрено ручное отключение нагревательного элемента.
- 2.9 Разработать функциональную схему автоматического регулирования температуры воздуха в тепловом шкафу. Температура воздуха поддерживается с помощью термометра. При достижении температуры воздуха в шкафу 70^{0} С ТЭНы отключаются, предусмотреть сигнализацию лампочкой.
- 2.10 Разработать функциональную схему автоматического управления процессом сушки крахмала в центробежной сушилке. Система автоматического регулирования сводится к поддержанию на заданном уровне температуры и влажности среды в камере. Температура измеряется с помощью двух термометров минимального и максимального значений и регулируется подачей теплоносителя. Влажность регулируется с помощью вентилятора.
- 2.11 Разработать функциональную схему автоматического контроля давления в пароводяной

рубашке автоклава. Манометр, контролирующий давление пара, позволяет осуществлять визуальный контроль за давлением. При достижении крайних значений давления предусмотреть сигнализацию лампой.


- 2.12 Разработать функциональную схему автоматического управления системой подачи масла в жарочную ванну. Обеспечить постоянный уровень масла в ванне. Предусмотреть сигнализацию лампочкой при достижении минимального значения уровня.
- 2.13 Разработать функциональную схему автоматического управления концентрацией раствора бисульфата натрия в машине для сульфитации картофеля. Для предотвращения потемнения и улучшения качества картофеля машина снабжена регулятором, который автоматически поддерживает концентрацию раствора в пределах 0.5%, закрывая или открывая клапан подачи раствора на трубопроводе. Предусмотреть сигнализацию при достижении максимального значения уровня раствора в машине.
- 2.14 Разработать функциональную схему автоматизации процесса сушки вяленой рыбы. Влагосодержание высушиваемой рыбы контролируется автоматическим психрометром и регулируется подачей воздуха в сушильную камеру при помощи приточного вентилятора.
- 2.15 Разработать функциональную схему автоматического регулирования подачи газа в камеру сгорания газового аппарата. Подача газа зависит от наличия пламени на запальнике и определяется по температуре с помощью термопары.
- 2.16 Разработать функциональную схему автоматического контроля температуры кремообразной массы для поддержания её в технологическом режиме. Схема предусматривает автоматический контроль перегрева массы. В качестве сигнализатора при достижении кремообразной массой 60° С использован дилатометрический термометр.
- 2.17 Разработать функциональную схему автоматического управления перепадом уровней молока в двух емкостях. При увеличении перепада уровня выше заданного прекратить подачу молока в первую ёмкость.
- 2.18 Разработать функциональную схему автоматического контроля температуры воды в водонагревателе посудомоечной машины. Система контроля включает: термометр манометрический; дисплей, показывающий текущее значение температуры; световой сигнализатор, указывающий на максимальное значение температуры.
- 2.19 Разработать функциональную схему автоматического контроля температуры в морозильной камере холодильника. Обеспечить показание текущего значения температуры на дисплее холодильника. При открытой дверце морозильной камеры предусмотреть сигнализацию лампочкой.
- 2.20 Разработать функциональную схему автоматического регулирования давления в камере выпарной станции для приготовления сгущенного молока. При максимально допустимом значении давления обеспечить подачу молока в камеру. Управление клапаном осуществляется дистанционно и дублируется оператором. Предусмотреть световую сигнализацию максимального значения давления.
- 2.21 Обеспечить автоматический контроль процесса переработки винограда в дробильно-прессовом отделении. Схема автоматизации предусматривает включение электродвигателя дробилки и сигнализацию верхнего и нижнего уровней мезги в ёмкости.
- 2.22 Разработать функциональную схему автоматического контроля температуры и вязкости масло-ароматической смеси при её хранении. Контроль вязкости маслоароматической смеси осуществляется с помощью рН-метра. В случае отклонения величины вязкости пищевой массы от заданного значения в схеме автоматизации предусматривается световая сигнализация.
- 2.23 Разработать функциональную схему автоматического регулирования подачи воздуха в камеру. Обеспечить выдержку времени подачи воздуха в течение 15 мин. При включении вентилятора предусмотреть световую сигнализацию.
- 2.24 Обеспечить автоматический контроль процесса сушки крахмала в центробежной сушилке. В процессе сушки крахмала необходимо контролировать температуру и влажность

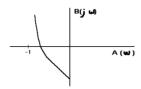

продукта. Система включает в себя: два датчика температуры – «сухой» и «мокрый» соответственно, сигнальные устройства «сухого» и «мокрого» термометров.


- 2.25 Предусмотреть автоматический контроль наличия масла в ванне автомата для приготовления и жарки пончиков. Заданное значение уровня масла в ёмкости обеспечивается поплавковым реле уровня. Сигнал о наполнении ванны подаётся сигнализатором и загорается лампочка. Контроль температуры масла осуществляется дилатометрическим термометром.
- 2.26 Разработать функциональную схему регулирования давления пищевой массы в ёмкости. Нагрев продукта осуществляется острым паром.
- 2.27 Разработать функциональную схему автоматизации системы заполнения ёмкости для хранения вишнёвого сока. Подача вишнёвого сока осуществляется при открывании вентиля на патрубке для входа сока и сигнализируется лампочкой. Предусмотреть контроль расхода сока. При достижении максимального уровня вишнёвого сока в ёмкости обеспечить сигнализацию.
- 2.28 Разработать функциональную схему регулирования концентрации моющего раствора посудомоечной машины. При увеличении концентрации моющего средства выше заданной регулятор прекращает подачу моющего средства. Предусмотреть контроль температуры раствора. При достижении максимального значения температуры раствора обеспечить подачу холодной воды в ёмкость.
- 2.29 Разработать функциональную схему автоматического контроля температуры продукта в камере. Система контроля включает:
- термометр манометрический;
- дисплей, показывающий текущее значение температуры продукта;
- две лампочки, сигнализирующие о достижении продуктом максимальной или минимальной температуры.

3. Перечень третьих заданий контрольной работы:

1. Разработать принципиальную электрическую схему по заданной функциональной схеме (схема выбирается по заданию преподавателя):

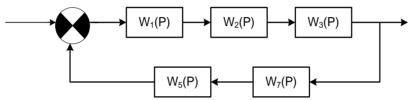
3.2 ОЦЕНОЧНЫЙ МАТЕРИАЛ ВОПРОСЫ ДЛЯ ЗЧЕТА С ОЦЕНКОЙ


Перечень первых вопросов:

- 1. Биметаллические датчики температуры. Область применения. Принцип действия.
- 2. Весовой плотномер. Обосновать выбор вторичного преобразователя, обеспечивающего следящий контроль за плотность солевого раствора.
- 3. Газоанализаторы. Принцип действия. Пояснить работу на примере термомагнитного газоанализатора. Предложить вторичный преобразователь. Принятое решение пояснить.
- 4. Генераторные датчики. Классификация. Предложить генераторный датчик контроля разности температур. Пояснить принцип действия датчика.
- 5. Гидростатические плотномеры. Обосновать выбор вторичного прибора, обеспечивающего следящий контроль за плотностью контролируемой жидкости.
- 6. Диэлькометрический влагомер. Обосновать выбор приборов, входящих в систему следящего контроля влажности.
- 7. Ёмкостные датчики. Пояснить работу на примере дифференциального датчика. Предложить структурную схему контроля расхода. Обосновать элементы автоматики, входящие в систему.
- 8. Индукционные преобразователи генераторного типа. Основное отличие генераторного индукционного преобразователя от параметрического индуктивного.
- 9. Калориметрический расходомер. Схема. Принцип действия. Обосновать выбор вторичного преобразователя.
- 10. Манометрические термометры. Принцип действия. Область применения. Функциональная схема регулирования температуры с помощью манометрического термометра.
- 11. Оптические приборы для измерения влажности твердых продуктов. Предложить схему контроля влажности, обосновать выбор приборов.
- 12. Параметрические датчики реактивного сопротивления. Схема и основная характеристика индуктивного датчика. Обосновать выбор прибора, обеспечивающего следящий контроль и регистрацию массы при использовании индуктивного первичного преобразователя.
- 13. Приборы для измерения расхода. Классификация. Обоснование выбора вторичных приборов к каждому типу расходомеров.
- 14. Проволочные тензодатчики. Характеристики, принцип действия, область применения. Способы устранения температурной погрешности датчиков (схемы, принцип действия).
- 15. Психрометр. Принцип действия. Описать первичные устройства, используемые в схеме автоматического психрометра.
- 16. Расходомеры постоянного перепада давления.
- 17. Разработать функциональную схему контроля и регистрации расхода. Обоснование выбора вторичного прибора.

- 18. Реостатные преобразователи. Схемы подключения реостатных преобразователей. Предложить систему контроля концентрации жидких продуктов с использованием реостатного преобразователя. Обосновать выбор прибора, обеспечивающего следящий контроль за концентрацией жидких продуктов.
- 19. Рефрактометр. Схема. Принцип действия. Обосновать выбор вторичного прибора, обеспечивающего регистрацию контролируемого параметра.
- 20. Тепловые расходомеры с термопреобразователями сопротивления. Принцип действия. Разработать функциональную схему регистрации расхода солевого раствора. Обосновать выбор вторичного регистрирующего прибора.
- 21. Термистор. Принцип действия. Обосновать выбор вторичного прибора. Преимущества и недостатки термисторов в сравнении с термометрами сопротивления.
- 22. Термопара. Пояснить физическую сущность возникновения термо-э.д.с. с точки зрения электронного строения материала. Обосновать выбор вторичного преобразователя.
- 23. Терморезисторы. Принцип действия. Область применения. Обосновать выбор вторичного прибора.
- 24. Термоэлектрические первичные преобразователи скорости. Принцип действия. Вторичные показывающие приборы, работающие в комплекте с преобразователями скорости.
- 25. Плунжерные датчики. Принцип действия. Обосновать выбор вторичного регистрирующего прибора, работающего в комплекте с плунжерным датчиком.

Перечень вторых вопросов:


- 1. Автоматический мост. Схема. Назначение элементов. Принцип действия.
- 2. Мостовая измерительная схема постоянного тока. Условия равновесия моста.
- 3. Мостовая измерительная схема переменного тока. Условие равновесия моста.
- 4. Чувствительность мостовых измерительных схем. Пути увеличения чувствительности схем.
- 5. Компенсационные измерительные схемы. Принцип действия
- 6. Автоматический электронный потенциометр. Схема потенциометра с электронным и магнитным усилителем.
- 7. Преобразователь частоты. Схема, принцип действия, назначение.
- 8. Дифференциально трансформаторный вторичный прибор. Область применения.
- 9. Дифференциально-трансформаторные измерительные схемы. Принцип действия.
- 10. Логометры. Измерительная схема. Принцип действия. Область применения.
- 11. Алгебра логики. Минимизация электрических систем управления.
- 12. Алгебра логики. Основные понятия. Операция дизъюнкции. Основные соотношения операции дизъюнкция. Логическая запись и реализация операции в виде принципиальной схемы.
- 13. Операции конъюнкции, дизъюнкции и инверсии. Реализация операций в виде электрических схем. Вычертить принципиальную схему по аналитической записи логической функции: s·(d V k)·t·K=AN
- 14. Дроссельный магнитный усилитель с начальным смещением (подмагничиванием) Принцип усиления сигнала. Способы устранения влияния переменной составляющей тока рабочей обмотки на обмотку управления.
- 15. Дроссельный магнитный усилитель на двух сердечниках. Принцип усиления сигнала.
- 16. Двухтактный дифференциальный магнитный усилитель. Пояснить систему реверса сигнала.
- 17. Магнитные усилители с обратной связью. Схема усилителя с внешней обратной связью.
- 18. Трансформаторная схема двухтактного магнитного усилителя без обратной связи. Принцип действия.
- 19. Критерии устойчивости. Используя критерий Найквиста-Михайлова оценить степень устойчивости системы, амплитудно-фазовая характеристика которой имеет вид:

- 20. Критерий устойчивости Раусса Гурвица
- 21. Записать в общем виде уравнение автоматической системы, для которой градограф Михайлова имеет вид:

- 22. Передаточные функции звеньев $W_1(p)$ = K и $W_2(p)$ = $1/T_p$. Записать выражение эквивалентной передаточной функции системы. Оценить устойчивость системы, применяя критерий Михайлова
- 23. Понятие устойчивости автоматических систем. Критерии устойчивости.
- 24. Передаточные функции звеньев. Структурная алгоритмическая схема системы имеет вид:

Записать выражение передаточной функции этой системы.

- 25. Реле. Основные параметры и характеристики электромагнитных реле. Область применения
- 26. Реле переменного тока. Способы устранения вибрации якоря
- 27. Поляризованное реле принцип действия. Область применения
- 28. Регулирующие устройства прямого действия. Пояснить работу.
- 29. Регуляторы

Перечень третьих вопросов:

- 1. Разработать принципиальную электрическую схему системы автоматического контроля температуры. Датчик медный термометр сопротивления.
- 2. Разработать принципиальную электрическую схему системы автоматического контроля и обеспечить сигнализацию крайних значений температуры фритюра. Дилатометрический прибор.
- 3. Разработать принципиальную электрическую схему системы автоматического контроля давления. Манометрический датчик с дифференциальным преобразователем.
- 4. Разработать принципиальную электрическую схему системы автоматического контроля скорости. Датчик тахометрический прибор.
- 5. Разработать принципиальную электрическую схему системы автоматического контроля температуры. Датчик термопара.
- 6. Разработать принципиальную электрическую схему системы автоматического контроля концентрации солевого рассола. Безэлектродный концентратомер.
- 7. Разработать принципиальную электрическую схему систем автоматического контроля температуры. Датчик манометрический термометр.
- 8. Разработать принципиальную электрическую схему систем автоматического контроля расхода. Датчик электромагнитный расходомер.
- 9. Разработать принципиальную электрическую схему систем автоматического регулирования расхода. Датчик расходомер постоянного перепада давления.

- 10. Разработать принципиальную электрическую схему систем автоматического контроля плотности. Датчик весовой плотномер.
- 11. Разработать принципиальную электрическую схему систем автоматического контроля уровня. Датчик поплавок.
- 12. Разработать принципиальную электрическую схему систем автоматического регулирования температуры жидкости. Регулирование осуществляется по двухпозиционному закону. Датчик манометрический термометр
- 13. Разработать принципиальную электрическую схему системы автоматического контроля концентрации. Кондуктометрический датчик.
- 14. Разработать принципиальную электрическую схему системы автоматического регулирования давления. Датчик-тензоманометр
- 15. Разработать принципиальную электрическую схему системы автоматического контроля уровня. Датчик-буйковый уровнемер.
- 16. Разработать принципиальную схему системы автоматического регулирования расхода. Датчик – тепловой расходомер
- 17. Разработать принципиальную электрическую схему системы автоматического контроля массы. Индуктивный измерительный прибор.
- 18. Разработать принципиальную электрическую схему системы автоматического контроля расхода газа. Датчик термомагнитный прибор.
- 19. Разработать принципиальную электрическую схему системы автоматического контроля концентрации яблочного сока. Датчик оптический концентратомер
- 20. Разработать принципиальную электрическую схему системы автоматического контроля концентрации. Электродный концентратомер
- 21. Разработать принципиальную электрическую схему системы автоматического контроля влажности. Датчик диэлькометрический влагомер.
- 22. Разработать принципиальную электрическую схему системы автоматического регулирования разности температур воздуха в охлаждаемых камерах. Термоэлектрический датчик.

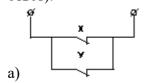
Перечень четвертых вопросов:

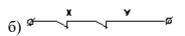
- 1. Автоматизация аппарата для жарки пончиков АП-3М.
- 2. Автоматизация варочного устройства УЭВ-60.
- 3. Автоматизация водонагревателя НЭ-1Б.
- 4. Автоматизация жаровни ЖВЭ-720.
- 5. Автоматизация жарочного шкафа ШЖЭСМ-2К.
- 6. Автоматизация кипятильника КНЭ-50.
- 7. Автоматизация котла КЭ.
- 8. Автоматизация котла типа КПЭСМ-60.
- 9. Автоматизация мармита МСЭСМ-60.
- 10. Автоматизация пароварочного аппарата типа АПЭСМ-2.
- 11. Автоматизация пекарского шкафа ШПЭСМ-3.
- 12. Автоматизация пищеварочного котла типа КЭ.
- 13. Автоматизация плиты ПЭСМ 4Ш.
- 14. Автоматизация сковороды СЭ-045.
- 15. Автоматизация сковороды СЭСМ-0.2.
- 16. Автоматизация фритюрницы типа ФЭСМ-20.

Перечень пятых вопросов:

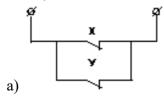
1. Разработать функциональную схему автоматизации процесса заполнения ёмкости для хранения вишнёвого сока. Подача вишнёвого сока осуществляется при открывании вентиля на патрубке для входа сока и сигнализируется лампочкой. Предусмотреть

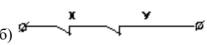
- контроль расхода сока. При достижении максимального уровня вишнёвого сока в ёмкости обеспечить сигнализацию.
- 2. Разработать функциональную схему контроля уровня и температуры в расходном баке бутылкомоечной машины. Уровень в расходном баке контролируется датчиком уровня, сигнал которого поступает на электронный сигнализатор уровня, осуществляющий управление электромагнитным клапаном, установленным на линии подачи воды в бак. Температура раствора щелочи в расходном баке измеряется термопреобразователем сопротивления, сигнал от которого поступает на показывающий и регистрирующий прибор, расположенный на щите, который управляет электрическим клапаном подачи пара на подогрев щелочного раствора.
- 3. Разработать функциональную схему САР расхода. Схемой автоматизации предусмотрено регулирование расхода воды, поступающей в спиртоловушку. Расход измеряется ротаметром, выходной сигнал которого подается на вторичный прибор с регулятором, управляющим клапаном подачи воды.
- 4. Разработать функциональную схему автоматизации процесса присыпки конфет вафельной стружкой. Схема включает питатель с вафельной стружкой и ленточный конвейер с конфетами. Обеспечить автоматический контроль уровня вафельной стружки в питателе. Пуск электродвигателя конвейера с конфетами сигнализируется лампой.
- 5. Разработать функциональную схему автоматического контроля давления в пароводяной рубашке автоклава. Манометр.
- 6. Разработать функциональную схему автоматического контроля и защиты от перелива фруктового сока в сборник. Верхнее значение уровня сока сигнализируется лампой. Предусмотреть операторное управление подачей сока.
- 7. Разработать функциональную схему автоматического контроля наличия масла в ванне автомата для приготовления и жарки пончиков. Заданное значение уровня масла в ёмкости обеспечивается поплавковым реле уровня. Сигнал о наполнении ванны подаётся сигнализатором и загорается лампочка. Контроль температуры масла осуществляется дилатометрическим термометром.
- 8. Разработать функциональную схему автоматического контроля процесса переработки винограда в дробильно-прессовом отделении. Схема автоматизации предусматривает включение электродвигателя дробилки и сигнализацию верхнего и нижнего уровней мезги в ёмкости.
- 9. Разработать функциональную схему автоматического контроля температуры и вязкости масло ароматической смеси при её хранении. Контроль вязкости масло ароматической смеси осуществляется с помощью рН-метра. В случае отклонения величины вязкости пищевой массы от заданного значения в схеме автоматизации предусматривается световая сигнализация.
- 10. Разработать функциональную схему автоматического контроля температуры продукта в камере. Система контроля включает: термометр манометрический;
 - дисплей, показывающий текущее значение температуры продукта;
 - две лампочки, сигнализирующие о достижении продуктом максимальной или минимальной температуры
- 11. Разработать функциональную схему автоматического регулирования прогрева воздуха в помещении. Воздух прогревается с помощью теплового вентилятора. При включении вентилятора обеспечить нагрев воздуха до 200С.
- 12. Разработать функциональную схему автоматического регулирования подачи газа в камеру сгорания газового аппарата. Подача газа зависит от наличия пламени на запальнике и определяется по температуре с помощью термопары.
- 13. Разработать функциональную схему автоматического регулирования температуры воздуха в тепловом шкафу. Температура воздуха поддерживается с помощью термометра. При достижении температуры воздуха в шкафу 700С ТЭНы отключаются, предусмотреть сигнализацию лампочкой.


- 14. Разработать функциональную схему автоматического управления концентрацией раствора бисульфата натрия в машине для сульфитации картофеля. Для предотвращения потемнения и улучшения качества картофеля машина снабжена регулятором, который автоматически поддерживает концентрацию раствора в пределах 0.5%, закрывая или открывая клапан подачи раствора на трубопроводе. Предусмотреть сигнализацию при достижении максимального значения уровня раствора в машине.
- 15. Разработать функциональную схему автоматического управления системой подачи масла в жарочную ванну. Обеспечить постоянный уровень масла в ванне. Предусмотреть сигнализацию лампочкой при достижении минимального значения уровня.
- 16. Разработать функциональную схему контроля влажности в охлаждаемой камере. Предусмотреть блок дистанционного управления сигнализирующей аппаратурой.
- 17. Разработать функциональную схему контроля расхода промоев. Расход промоев контролируется индукционным расходомером, работающим в комплекте с прибором дистанционной передачи сигналов, установленным по месту и вторичным показывающим и регистрирующим прибором.
- 18. Разработать функциональную схему контроля температуры внутри продукта. Температура контролируется игольчатой термопарой, работающей в комплекте с электронным потенциометром, имеющим контактное устройство. Системой предусмотрен следящий контроль над температурой.
- 19. Разработать функциональную схему контроля уровня моющего и дезинфицирующего раствора в емкостях. Заданное значение уровня обеспечивается поплавковыми регуляторами. Сигнал о наполнении емкостей подается на сигнализатор с переключающим устройством, который блокирует исполнительные механизмы подачи дезинфицирующего и моющего растворов.
- 20. Разработать функциональную схему регулирования температуры в сушильной камере. Система регулирования температуры включает импульсный прерыватель (реле времени). От прерывателя сигнал подается на регулирующий автоматический электронный мост, воздействующий на исполнительный механизм регулирующего клапана. Системой предусмотрен переход на ручное управление исполнительным механизмом.
- 21. Разработать функциональную схему системы дистанционного автоматического контроля влажности.
- 22. Разработать функциональную схему системы регулирования концентрации солевого раствора. Возмущающие воздействия, вызывающие отклонения качества смеси, связанные с изменениями расходов компонентов смеси.
- 23. Разработать функциональную схему автоматизации процесса заполнения ёмкости для хранения вишнёвого сока. Подача вишнёвого сока осуществляется при открывании вентиля на патрубке для входа сока и сигнализируется лампочкой. Предусмотреть контроль расхода сока. При достижении максимального уровня вишнёвого сока в ёмкости обеспечить сигнализацию.
- 24. Разработать функциональную схему контроля уровня и температуры в расходном баке бутылкомоечной машины. Уровень в расходном баке контролируется датчиком уровня, сигнал которого поступает на электронный сигнализатор уровня, осуществляющий управление электромагнитным клапаном, установленным на линии подачи воды в бак. Температура раствора щелочи в расходном баке измеряется термопреобразователем сопротивления, сигнал от которого поступает на показывающий и регистрирующий прибор, расположенный на щите, который управляет электрическим клапаном подачи пара на подогрев щелочного раствора.
- 25. Разработать функциональную схему САР расхода. Схемой автоматизации предусмотрено регулирование расхода воды, поступающей в спиртоловушку. Расход измеряется ротаметром, выходной сигнал которого подается на вторичный прибор с регулятором, управляющим клапаном подачи воды.


- 26. Разработать функциональную схему автоматизации процесса присыпки конфет вафельной стружкой. Схема включает питатель с вафельной стружкой и ленточный конвейер с конфетами. Обеспечить автоматический контроль уровня вафельной стружки в питателе. Пуск электродвигателя конвейера с конфетами сигнализируется лампой.
- 27. Разработать функциональную схему автоматического контроля давления в пароводяной рубашке автоклава. Манометр.
- 28. Разработать функциональную схему автоматического контроля и защиты от перелива фруктового сока в сборник. Верхнее значение уровня сока сигнализируется лампой. Предусмотреть операторное управление подачей сока.
- 29. Разработать функциональную схему автоматического контроля наличия масла в ванне автомата для приготовления и жарки пончиков. Заданное значение уровня масла в ёмкости обеспечивается поплавковым реле уровня. Сигнал о наполнении ванны подаётся сигнализатором и загорается лампочка. Контроль температуры масла осуществляется дилатометрическим термометром.
- 30. Разработать функциональную схему автоматического контроля процесса переработки винограда в дробильно-прессовом отделении. Схема автоматизации предусматривает включение электродвигателя дробилки и сигнализацию верхнего и нижнего уровней мезги в ёмкости.
- 31. Разработать функциональную схему автоматического контроля температуры и вязкости маслоараматической смеси при её хранении. Контроль вязкости маслоароматической смеси осуществляется с помощью рН-метра. В случае отклонения величины вязкости пищевой массы от заданного значения в схеме автоматизации предусматривается световая сигнализация.
- 32. Разработать функциональную схему автоматического контроля температуры продукта в камере. Система контроля включает: термометр манометрический;
 - дисплей, показывающий текущее значение температуры продукта;
 - две лампочки, сигнализирующие о достижении продуктом максимальной или минимальной температуры.
- 33. Разработать функциональную схему автоматического регулирования прогрева воздуха в помещении. Воздух прогревается с помощью теплового вентилятора. При включении вентилятора обеспечить нагрев воздуха до 200С.
- 34. Разработать функциональную схему автоматического регулирования подачи газа в камеру сгорания газового аппарата. Подача газа зависит от наличия пламени на запальнике и определяется по температуре с помощью термопары.
- 35. Разработать функциональную схему автоматического регулирования температуры воздуха в тепловом шкафу. Температура воздуха поддерживается с помощью термометра. При достижении температуры воздуха в шкафу 700С ТЭНы отключаются, предусмотреть сигнализацию лампочкой.
- 36. Разработать функциональную схему автоматического управления концентрацией раствора бисульфата натрия в машине для сульфитации картофеля. Для предотвращения потемнения и улучшения качества картофеля машина снабжена регулятором, который автоматически поддерживает концентрацию раствора в пределах 0.5%, закрывая или открывая клапан подачи раствора на трубопроводе. Предусмотреть сигнализацию при достижении максимального значения уровня раствора в машине.
- 37. Разработать функциональную схему автоматического управления системой подачи масла в жарочную ванну. Обеспечить постоянный уровень масла в ванне. Предусмотреть сигнализацию лампочкой при достижении минимального значения уровня.
- 38. Разработать функциональную схему контроля влажности в охлаждаемой камере. Предусмотреть блок дистанционного управления сигнализирующей аппаратурой.
- 39. Разработать функциональную схему контроля расхода промоев. Расход промоев контролируется индукционным расходомером, работающим в комплекте с прибором

- дистанционной передачи сигналов, установленным по месту и вторичным показывающим и регистрирующим прибором.
- 40. Разработать функциональную схему контроля температуры внутри продукта. Температура контролируется игольчатой термопарой, работающей в комплекте с электронным потенциометром, имеющим контактное устройство. Системой предусмотрен следящий контроль над температурой.
- 41. Разработать функциональную схему контроля уровня моющего и дезинфицирующего раствора в емкостях. Заданное значение уровня обеспечивается поплавковыми регуляторами. Сигнал о наполнении емкостей подается на сигнализатор с переключающим устройством, который блокирует исполнительные механизмы подачи дезинфицирующего и моющего растворов.
- 42. Разработать функциональную схему регулирования температуры в сушильной камере. Система регулирования температуры включает импульсный прерыватель (реле времени). От прерывателя сигнал подается на регулирующий автоматический электронный мост, воздействующий на исполнительный механизм регулирующего клапана. Системой предусмотрен переход на ручное управление исполнительным механизмом.
- 43. Разработать функциональную схему системы дистанционного автоматического контроля влажности.
- 44. Разработать функциональную схему системы регулирования концентрации солевого раствора. Возмущающие воздействия, вызывающие отклонения качества смеси, связанные с изменениями расходов компонентов смеси.


Перечень шестых вопросов:


- 1. Электрическая цепь из двух смежных контуров, в каждом из которых действует своя э.д.с., а измерительный прибор включается в общую ветвь и реагирует на разность контурных токов относится к (выбрать правильный ответ):
- а) мостовым измерительным схемам;
- б) дифференциальным измерительным схемам;
- в) компенсационным измерительным схемам.
- 2. В регуляторы прямого действия (выбрать правильный ответ):
- а) Регулирующий орган перемещается под действием силы, которая развивается чувствительным элементом;
- б) Привод регулирующего органа осуществляться вспомогательной энергией, которая отбирается от рабочей среды.
- 3. Условия равновесия мостовой измерительной схемы переменного тока (выбрать правильный ответ):
- а) произведение сопротивлений противоположных плеч равны;
- б) произведение модулей сопротивлений смежных плеч равны;
- в) произведение модулей сопротивлений противоположных плеч равны, сумма углов сдвига фаз противоположных плеч равна.
- 4. Чувствительность мостовой измерительной схемы увеличивается при подключении нескольких измерительных преобразователей (выбрать правильный ответ):
- а) в смежные плечи с одинакового знаком прироста;
- б) в противоположные плечи с одинакового знаком прироста;
- в) в противоположные плечи с разного знаком прироста.
- 5. Реализация операции конъюнкция в виде электрической схемы (выбрать правильный ответ):

6. Реализация операции дизъюнкция в виде электрической схемы (выбрать правильный ответ):

- 7. Компенсационные измерительные схемы используются в (выбрать правильный ответ):
- а) автоматических мостах;
- б) дифференциально трансформаторных приборах;
- в) потенциометрах.
- 8. К параметрическим датчикам относятся такие элементы, в которых изменение контролируемой величины вызывает (выбрать правильный ответ):
- а) изменение сопротивления;
- б) возникновения э.д.с.;
- в) перемещение подвижной части датчика.
- 9. К генераторным датчикам относятся такие элементы, в которых изменение контролируемой величины вызывает (выбрать правильный ответ):
- а) изменение сопротивления;
- б) возникновение э.д.с.;
- в) перемещение подвижной части датчика.
- 10. Деформация тэнзодатчика приводит к изменению (выбрать правильный ответ):
- а) активного сопротивления;
- б) реактивного сопротивления;
- в) напряжения.
- 11. Назначение преобразователя частоты в потенциометрах (выбрать правильный ответ):
- а) преобразование переменного сигнала в постоянный;
- б) преобразование постоянного сигнала в переменный;
- в) преобразование переменного сигнала с целью изменения частоты колебаний.
- 12. В каких системах при изменении регулированной величины регулятор вырабатывает регулирующее влияние на объект (выбрать правильный ответ):
- а) САР, действующих по отклонению;
- б) САР комбинированная;
- в) САР, действующих по возмущению.
- 13. Система, которая включает контролируемый объект, измерительное устройство, показывающее и сигнализирующее устройство относиться к системам автоматического (выбрать правильный ответ):
- а) контроля;
- б) регулирования;
- в) операторного управления.
- 14. Какие технические средства автоматизации относятся к САК (выбрать правильный ответ):
- а) контролируемый объект;

г) задающий блок;

б) измерительное устройство;

д) информационный блок;

в) регулирующее устройство;

- е) исполнительный блок.
- 15. Буквенно-графическое обозначение прибора дистанционного управления, расположенного на пульте показан на рисунке (выбрать правильный ответ):

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ

Изучение дисциплины студентами осуществляется на лекциях, практических занятиях, а также в процессе их самостоятельной работы.

Перечень оценочных средств по дисциплине:

- банк вопросов для тестирования;
- перечень вопросов для подготовки к защите отчетов по практикуму;
- контрольная работа (для з.ф.о.);
- экзаменационные билеты (вопросы для подготовки к экзамену).

Контроль выполнения работ практикума проводится в виде проверки оформления отчетов и их защиты.

Форма промежуточной аттестации по дисциплине:

- Текущий модульный контроль (тестирование, устный опрос по темам, защита работ практикума, контрольная работа);
 - экзамен.

Для оценки знаний обучающихся используют **тестовые задания** в закрытой форме (когда испытуемому предлагается выбрать правильный ответ из нескольких возможных), открытой форме (ввод слова или словосочетания с клавиатуры), выбор соответствия (выбор правильных описаний к конкретным терминам), а также множественный выбор (выбор нескольких возможных вариантов ответа). Результат зависит от общего количества правильных ответов. Тестирование проводится в системе Moodle, оценивание автоматизировано.

Проверка письменно оформленных в тетрадях для работ практикума отчетов о проведенных исследованиях осуществляется в аудиторной форме. Во время проверки и оценки отчетов проводится анализ результатов выполнения, выявляются типичные ошибки, а также причины их появления. Анализ оформленных отчетов проводится оперативно. При проверке отчетов преподаватель исправляет каждую допущенную ошибку и определяет полноту ответа, учитывая при этом четкость и последовательность изложения мыслей, наличие и достаточность пояснений, знания терминологии в предметной области. Оформленная работа оценивается в соответствии с баллом, выделенным на конкретную работу (согласно рабочей программе курса).

Контрольная работа по учебной дисциплине выполняется во внеаудиторной форме по итогам изучения теоретического материала курса.

Внеаудиторная контрольная работа предполагает решение задач в соответствие с вариантом, их оформление и защиту. Время выполнения не ограничено. Оформленная работа должна быть представлена в период сессии. Критериями оценки такой работы становятся: соответствие содержания ответа вопросу, понимание базовых категорий темы, использование в ответе этих категорий, грамотность, последовательность изложения. Для очной формы обучения выполнение внеаудиторной контрольной работы не является обязательным. Контрольная работа оценивается до 15 баллов и выставляется в колонку повышения баллов (у очной формы обучения) или распределяется между модулями курса.

Устный опрос позволяет оценить знания и кругозор обучающегося, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Опрос как важнейшее средство развития мышления и речи обладает большими возможностями воспитательного воздействия преподавателя. Обучающая функция состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к экзамену.

Подготовка **устного доклада** предполагает выбор темы сообщения в соответствии с календарно-тематическим планом. Выбор осуществляется с опорой на список литературы, предлагаемый по данной теме.

При подготовке доклада необходимо вдумчиво прочитать работы, после прочтения следует продумать содержание и кратко его записать. Дословно следует выписывать лишь конкретные определения, можно включать в запись примеры для иллюстрации. Проблемные вопросы следует вынести на групповое обсуждение в процессе выступления.

Желательно, чтобы в докладе присутствовал не только пересказ основных идей и фактов, но и имело место выражение обучающимся собственного отношения к излагаемому материалу, подкрепленного определенными аргументами (личным опытом, мнением других исследователей).

Критериями оценки устного доклада являются: полнота представленной информации, логичность выступления, наличие необходимых разъяснений и использование иллюстративного материала по ходу выступления, привлечение материалов современных научных публикаций, умение ответить на вопросы слушателей, соответствие доклада заранее оговоренному временному регламенту.

Зачет проводится по дисциплине в соответствии с утвержденным учебным планом. Для проведения зачета лектором курса ежегодно разрабатывается (обновляется) программа зачета, которая утверждается на заседании кафедры. Студенту для повышения набранных в течение семестра баллов предлагается Билет, который включает в себя 2 вопроса, полный правильный ответ на каждый из которых может принести по 10 баллов. Таким образом, на зачете обучающийся может максимально набрать 20 баллов, что позволяет повысить набранные на протяжении семестра по результатам текущего модульного контроля баллы.

РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

Текущее тестирование и самостоятельная работа										Сумма	
Смысловой модуль Смысловой модуль				Смысловой модуль №3				баллов			
№1		№2	2								
T1	T2		T3	T4		T5	T6	T7	T8	Т9	100
10	10		10	20		10	10	10	10	10	

Примечание. Т1, Т2, ... Т9 – темы соответствующих смысловых модулей

Соответствие государственной шкалы оценивания академической успеваемости и шкалы

Сумма баллов за	По государственной	Определение
все виды учебной	шкале	
деятельности		
90-100	«Отлично» (5)	отлично – отличное выполнение с
		незначительным количеством неточностей
80-89	«Хорошо» (4)	хорошо – в целом правильно выполненная
		работа с незначительным количеством
		ошибок (до 10 %)
75-79		хорошо – в целом правильно выполненная
		работа с незначительным количеством
		ошибок (до 15 %)
70-74	«Удовлетворительно» (3)	удовлетворительно – неплохо, но со
		значительным количеством недостатков
60-69		удовлетворительно – выполнение
		удовлетворяет минимальные критерии
35-59	«Неудовлетворительно»	неудовлетворительно –
	(2)	с возможностью повторной аттестации
0-34		неудовлетворительно –
		с обязательным повторным изучением
		дисциплины (выставляется комиссией)

лист изменений и дополнений

».c	D ~	п	П
№	Виды дополнений и	Дата и номер протокола заседания	Подпись
Π/Π	изменений	кафедры, на котором были	(с расшифровкой)
		рассмотрены и одобрены	заведующего
		изменения и дополнения	кафедрой
L	I .	<u> </u>	