Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Крылова Людмила Вячеславовна

Должность: Проректор по учебно-методической работе Дата подписания: 27.10.2021 НИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный ключ:

b066544bae1e449cd8bfce**©ЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ** ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

> «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ТОРГОВЛИ ИМЕНИ МИХАИЛА ТУГАН-БАРАНОВСКОГО»

### КАФЕДРА ХОЛОДИЛЬНОЙ И ТОРГОВОЙ ТЕХНИКИ ИМЕНИ ОСОКИНА В.В.

**УТВЕРЖДАЮ** 

Проректор по учебно-методической работе

Л.В.Крылова

(подпись)

2025 г.

# РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

## Б1.В.ДВ.02.02 ПРОМЫШЛЕННАЯ ТЕПЛОТЕХНИКА

Укрупненная группа направлений подготовки 15.00.00 Машиностроение Программа высшего образования – программа бакалавриата Направление подготовки 15.03.02 Технологические машины и оборудование Профиль: Инженерия технических систем пищевой промышленности Институт пищевых производств Курс, форма обучения: очная форма обучения, 2 курс заочная форма обучения, 3 курс

> Рабочая программа адаптирована для лиц с ограниченными возможностями здоровья и инвалидов (при наличии таких лиц)

> > Донецк 2025

Рабочая программа учебной дисциплины Промышленная теплотехника для обучающихся по направлению подготовки/специальности 15.03.02 Технологические машины и оборудование,

Профилю: Инженерия технических систем пищевой промышленности, разработанная в соответствии с учебным планом,

утвержденным Ученым советом ФГБОУ ВО «ДОННУЭТ»:

- в 2025 г. для очной формы обучения.
- в 2025 г. для заочной формы обучения.

**Разработчик**: <u>Карнаух В.В., проф. кафедры ХТТ им. Осокина В.В.,</u>

д-р.техн.наук, доцент;

Байда Борис Юрьевич ст. преп. кафедры XTT им. Осокина В.В

Рабочая программа утверждена на заседании кафедры холодильной и торговой техники имени Осокина В.В.

Протокол от «<u>24</u>» февраля <u>2025</u> года № 22

Заведующий кафедрой холодильной и торговой техники имени Осокина В.В.

(инициалы, фамилия) СОГЛАСОВАНО:

Директор института пищевых производств

Д.К.Кулешов

К.А.Ржесик

(подпись) 7 4. 01. 2025

(инициалы, фамилия)

ОДОБРЕНО

Учебно-методическим советом Университета

Протокол от «26» февраля 2025 года №7

Председатель

Л.В. Крылова

(подпись) (инициалы, фамилия)

> © Карнаух В.В., Байда Б.Ю. 2025 год © ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени

Михаила Туган-Барановского», 2025 год

### 1. ОПИСАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

| Наименование<br>показателя | Наименование укрупненной группы направлений подготовки, |                | тика учебной<br>плины      |
|----------------------------|---------------------------------------------------------|----------------|----------------------------|
|                            | направление подготовки,                                 | очная          | заочная/                   |
|                            | профиль, программа высшего                              | форма          | очно-заочная               |
|                            | образования                                             | обучения       | форма<br>обучения          |
| Количество зачетных        | Укрупненная группа                                      | вариати        |                            |
| единиц – 4                 | 15.00.00 Машиностроение (код и название)                |                | <u>внал</u><br>приативная) |
|                            | Направление подготовки                                  |                |                            |
|                            | 15.03.02 Технологические                                |                |                            |
|                            | машины и оборудование                                   |                |                            |
|                            | (код, название)                                         |                |                            |
| Модулей – 1                | ()                                                      | Год под        | готовки                    |
| Смысловых модулей – 3      | Профиль:                                                | 2 -й           | 3-й                        |
| Общее количество           | Инженерия технических систем                            | Сем            | естр                       |
|                            | пищевой промышленности                                  | _3й            | Зимняя                     |
| часов – 144                | (название)                                              |                | сессия                     |
|                            |                                                         | Лек            | ции                        |
|                            |                                                         | _32час.        | _6час.                     |
| Количество часов в         | Программа высшего образования                           | Практические   | , семинарские              |
| неделю для очной формы     | – программа бакалавриата                                | заня           | <b>К</b> ИТИ               |
| обучения:                  |                                                         | <u>-</u> час.  | <u>-</u> час.              |
|                            |                                                         | Лабораторн     | ные занятия                |
| аудиторных $-2$ ;          |                                                         | <u>32</u> час. | _6_ час.                   |
| самостоятельной работы     |                                                         | Самостоятел    | тьная работа               |
| обучающегося – 3           |                                                         | 49 час.        | _120,7 час.                |
|                            |                                                         | Индивидуаль    | ные задания*:              |
|                            |                                                         | 31             | 11,3_                      |
|                            |                                                         | Форма пром     | межуточной                 |
|                            |                                                         | аттест         | гации:                     |
|                            |                                                         | (зачет, з      | окзамен)                   |
|                            |                                                         | _экза:         | мен                        |

1. Соотношение количества часов аудиторных занятий и самостоятельной работы составляет:

для очной формы обучения - 64:80;

для заочной формы обучения - 12:132;

### 2. ЦЕЛЬ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

**Цель учебной дисциплины:** Формирование знаний о физико-химической сущности процессов и использование основных законов термодинамики в комплексной производственно-технологической деятельности; формирование знаний о закономерностях взаимного преобразования различных видов энергии в процессах, происходящих в макроскопических системах и сопровождающихся тепловыми эффектами; формирование знаний по теории процессов теплообмена; формирование знаний необходимых для расчета и грамотной эксплуатации технологического (теплового и холодильного) оборудования пищевых производств; решение вопросов оптимизации работы теплоэнергетических установок и защиты окружающей среды.

Задачи учебной дисциплины: обеспечение базовой теплотехнической подготовки, включающей освоение термодинамики тепломассообмена основных законов (теплопроводности, конвекции, теплового излучения), и методов их применения для анализа и расчета процессов, используемых в тепловых, холодильных машинах и других теплотехнических установках; получение навыков работы с литературными и электронными базами справочных данных; освоение методов расчета термодинамических процессов в разнообразных теплоэнергетических И низкотемпературных установках, практических задач, связанных с тепломассообменом в элементах энергетического оборудования; освоение методов термодинамического анализа и оценки эффективности процессов и циклов теплосиловых, теплонасосных и холодильных установок;

#### 3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина «Б1.В.ДВ.02.02 ПРОМЫШЛЕННАЯ ТЕПЛОТЕХНИКА» относится к дисциплинам вариативной части цикла профессиональной и практической подготовки раздел - Дисциплины свободного выбора студента

Требования к «входным» знаниям: иметь базовые знания по «Высшей математике», «Физике», «Химии».

Знания, полученные при изучении дисциплины «Теоретические основы теплотехники», будут использовании в таких курсах как «Процессы и аппараты пищевых производств», «Механика жидкости и газа», «Технологическое оборудование пищевых производств в отрасли», «Монтаж, эксплуатация, диагностика и ремонт оборудования отрасли», «Холодильное оборудование отрасли», также при подготовке и выполнении выпускной квалификационной работы.

# 4. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения изучения учебной дисциплины у обучающегося должны быть сформированы компетенции и индикаторы их достижения:

| Код и наименование                     | Код и наименование индикатора          |
|----------------------------------------|----------------------------------------|
| компетенции                            | достижения компетенции                 |
|                                        |                                        |
| УК-2 Способен определять круг задач в  | УК-2.1 Формулирует проблему, решение   |
| рамках поставленной цели и выбирать    | которой напрямую связано с достижением |
| оптимальные способы их решения, исходя | цели проекта                           |
| из действующих правовых норм,          | УК-2.2 Определяет связи между          |
| имеющихся ресурсов и ограничений       | поставленными задачами и ожидаемые     |
|                                        | результаты их решения                  |
| ПК-2 Способен выбирать основные и      | ПК-2.1 Способен выбирать основные и    |

вспомогательные материалы, способы реализации технологических процессов, участвовать в работах по доводке и освоению технологических процессов, в том числе в ходе подготовки производства новой продукции, применять прогрессивные методы эксплуатации технологического оборудования

вспомогательные материалы, способы реализации технологических процессов, участвовать в работах по доводке и освоению технологических процессов, в том числе в ходе подготовки производства новой продукции

В результате освоения дисциплины обучающийся должен:

#### знать:

- основные параметры состояния рабочих тел, единицы их измерения, приборы для определения этих параметров;
- основные теоретические положения взаимного преобразования теплоты и работы в тепловых машинах;
- основные термодинамические характеристики рабочих тел, используемых в тепловых и холодильных машинах;
- количественные и качественные методы термодинамического анализа процессов и циклов тепловых двигателей и аппаратов;
- основные законы теплопроводности, конвективного и лучистого теплообмена;
- способы расчета процессов теплообмена, в том числе при совместном участии нескольких видов теплообмена;
- способы моделирования теплообменных процессов;
- основы расчета теплообменных аппаратов;

#### уметь:

- выполнять необходимые расчеты для грамотной эксплуатации технологического (теплового и холодильного) оборудования пищевых производств;
- подбирать и эффективно эксплуатировать теплотехническое оборудование;
- проводить необходимые термодинамические расчеты;
- анализировать характеристики систем теплотехнического оборудования;
- рассчитывать количество теплоты, передаваемое теплопроводностью, конвекцией и излучением в узлах теплотехнического оборудования;
- рассчитывать потери теплоты и тепловые сопротивления в теплотехнических системах.

#### владеть:

навыками работы с технической литературой; навыками выполнения теплотехнического анализа всех термодинамических процессов; методами расчета термодинамических процессов реальных газов и паров; основами анализа рабочих процессов в тепловых машинах, определения параметров их работы, тепловой эффективности с использованием вычислительной техники и программного обеспечения; терминологией в области теплообмена, основными источниками информации и справочными данными по теплообмену; владеть инженерными методами рационального использования энергетических ресурсов.

#### 5. ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

#### Смысловой модуль 1. Основы технической термодинамики

- Тема 1. Основные понятия и определения термодинамики.
- Тема 2. Газовые смеси.
- Тема 3. Теплоемкость идеальных газов и их смесей.
- Тема 4. Первый закон термодинамики.
- Тема 5. Анализ термодинамических процессов
- Тема 6. Второй закон термодинамики
- Смысловой модуль 2. Реальные газы. Водяной пар

- Тема 7. Реальные газы. Уравнение состояния реальных газов.
- Тема 8 Термодинамические процессы реальных газов и водяного пара.
- Тема 9. Циклы газовых двигателей.
- Тема 10. Циклы паросиловых установок, холодильных машин и тепловых насосов
- Тема 11. Влажный воздух.
- Тема 12. Основы кондиционирования
- Смысловой модуль 3. Теплопередача
- Тема 13. Введение в теплообмен.
- Тема 14. Теплопроводность.
- Тема 15. Нестационарная теплопроводность.
- Тема 16. Конвективный теплообмен.
- Тема 17. Теплообмен излучением.
- Тема 18. Сложный теплообмен.
- Тема 19. Теплообменные аппараты

### 6. СТРУКТУРА УЧЕБНОЙ ДИСЦИПЛИНЫ

| 6. CTPYKTYPA       | \ J -1ED    | 110  | ид      | исци             |        |                 | тво час | OB                     |     |      |     |      |
|--------------------|-------------|------|---------|------------------|--------|-----------------|---------|------------------------|-----|------|-----|------|
| Название           |             | очна | я фо    | рма об           | учения |                 |         | заочная форма обучения |     |      |     |      |
| смысловых модулей  | в том числе |      |         |                  |        |                 |         | в том числе            |     |      |     |      |
| и тем              | всего       | л1   | $\Pi^2$ | лаб <sup>3</sup> |        | CP <sup>5</sup> | всего   | Л                      | П   | лаб  | инд | CP   |
| 1                  | 2           | 3    | 4       | 5                | 6      | 7               | 8       | 9                      | 10  | 11   | 12  | 13   |
| Смыс               | ловой і     | иоду | ль 1    | . Осн            | овы те | хничес          | кой тер | моди                   | нам | ики  |     |      |
| Основные понятия   |             |      |         |                  |        |                 | _       |                        |     |      |     |      |
| и определения      | 6           | 1    |         | 1                |        | 4               | 11,7    | 0,5                    |     | 0,5  |     | 10,7 |
| термодинамики.     |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Газовые смеси.     | 6           | 1    |         | 1                |        | 4               | 7       | 0,5                    |     | 0,5  |     | 6    |
| Теплоемкость       |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| идеальных газов и  | 7           | 1    |         | 2                |        | 4               | 7       | 0,5                    |     | 0,5  |     | 6    |
| их смесей.         |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Первый закон       | 7           | 1    |         | 2                |        | 4               | 7       | 0,5                    |     | 0,5  |     | 6    |
| термодинамики.     | /           | 1    |         | 2                |        | 4               | /       | 0,3                    |     | 0,3  |     | 0    |
| Анализ             |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| термодинамических  | 8           | 2    |         | 2                |        | 4               | 6       |                        |     |      |     | 6    |
| процессов          |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Второй закон       | 8           | 2    |         | 2                |        | 4               | 6       |                        |     |      |     | 6    |
| термодинамики.     | 0           |      |         | 2                |        | 4               | U       |                        |     |      |     | 0    |
| Итого по           |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| смысловому         | 42          | 8    |         | 10               |        | 24              | 44,7    | 2                      |     | 2    |     | 40,7 |
| модулю 1           |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| C                  | мысло       | вой  | моду    | уль 2.           | Реалы  | ные газ         | ы. Водя | ной                    | пар | 1    |     |      |
| Реальные газы.     |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Уравнение          | 8           | 2    |         | 2                |        | 4               | 6       | 0,5                    |     | 0,5  |     | 5    |
| состояния реальных |             | _    |         | _                |        | •               |         | 0,5                    |     | 0,5  |     | J    |
| газов.             |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Термодинамические  |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| процессы реальных  | 6           | 2    |         | 2                |        | 2               | 6       | 0,5                    |     | 0,5  |     | 5    |
| газов и водяного   |             | _    |         | _                |        | _               |         | 0,5                    |     | 0,5  |     | J    |
| пара.              |             |      |         |                  |        |                 |         |                        |     |      |     |      |
| Циклы газовых      | 6           | 2    |         | 2                |        | 2               | 6       | 0,5                    |     | 0,5  |     | 5    |
| двигателей         | Ŭ           |      |         |                  |        | _               | Ŭ       | 0,0                    |     | 0,0  |     |      |
| Циклы              | 6           | 2    |         | 2                |        | 2               | 6       | 0,5                    |     | 0,5  |     | 5    |
| паросиловых        | -           |      |         |                  |        |                 | -       | - 7-                   |     | - 7- |     | -    |

| установок,<br>холодильных            |          |        |      |        |                     |       |         |     |          |      |       |
|--------------------------------------|----------|--------|------|--------|---------------------|-------|---------|-----|----------|------|-------|
| машин и тепловых                     |          |        |      |        |                     |       |         |     |          |      |       |
| насосов                              |          |        |      | 2      |                     | 2     | _       |     |          |      |       |
| Влажный воздух.                      | 6        | 2      |      | 2      |                     | 2     | 5       |     |          |      | 5     |
| Основы                               | 5        | 2      |      | 2      |                     | 1     | 5       |     |          |      | 5     |
| кондиционирования<br><b>Итого по</b> |          |        |      |        |                     |       |         |     |          |      |       |
|                                      | 37       | 12     |      | 12     |                     | 13    | 34      | 2   | 2        |      | 30    |
| смысловому                           | 31       | 14     |      | 14     |                     | 13    | 34      | 4   | <u> </u> |      | 30    |
| модулю 2                             | $\Gamma$ | 747.70 | HODE | W MAR  |                     | Топло | породо  | 10  |          |      |       |
| Dagger                               |          | МЫС    | HORC | ри мод | (уль <b>э.</b><br>Г | Тепло | передач | 1a  |          | 1    |       |
| Введение в<br>теплообмен.            | 6        | 2      |      | 2      |                     | 2     | 6       | 0,5 | 0,5      |      | 5     |
| Теплопроводность.                    | 6        | 2      |      | 2      |                     | 2     | 6       | 0,5 | 0,5      |      | 5     |
| Нестационарная<br>теплопроводность.  | 6        | 2      |      | 2      |                     | 2     | 6       | 0,5 | 0,5      |      | 5     |
| Конвективный<br>теплообмен.          | 5        | 2      |      | 1      |                     | 2     | 6       | 0,5 | 0,5      |      | 5     |
| Теплообмен<br>излучением.            | 5        | 2      |      | 1      |                     | 2     | 10      |     |          |      | 10    |
| Сложный<br>теплообмен.               | 3        | 1      |      | 1      |                     | 1     | 10      |     |          |      | 10    |
| Теплообменные<br>аппараты.           | 3        | 1      |      | 1      |                     | 1     | 10      |     |          |      | 10    |
| Итого по                             |          |        |      |        |                     |       |         |     |          |      |       |
| смысловому                           |          |        |      |        |                     |       | 54      | 2   | 2        |      | 50    |
| модулю 3                             | 34       | 12     |      | 10     |                     | 12    |         |     |          |      |       |
| Всего по                             |          |        |      |        |                     |       |         |     |          |      |       |
| смысловым                            |          |        |      |        |                     |       | 132,7   | 6   | 6        |      | 120,7 |
| модулям                              | 113      | 32     |      | 32     |                     | 49    |         |     |          |      |       |
| Kamm                                 | 1,6      |        |      |        | 1,6                 |       | 0,9     |     |          | 0,9  |       |
| СРэк                                 |          |        |      |        |                     |       |         |     |          |      |       |
| ИК                                   |          |        |      |        |                     |       |         |     |          |      |       |
| КЭ                                   | 2        |        |      |        | 2                   |       | 2       |     |          | 2    |       |
| Каттэк                               | 0,4      |        |      | -      | 0,4                 |       | 0,4     |     |          | 0,4  |       |
| Контроль                             | 27       |        |      |        | 27                  |       | 8       |     |          | 8    |       |
| Всего часов                          | 144      | 32     |      | 32     | 31                  | 49    | 144     | 6   | 6        | 11,3 | 120,7 |

Примечания: 1. л – лекции;

- 2. п практические (семинарские) занятия;
- 3. лаб лабораторные занятия;
- 4. инд индивидуальные занятия;
- 5. СР самостоятельная работа;

### 7. ТЕМЫ СЕМИНАРСКИХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ

| № п/п | Название темы           | Количество часов |               |  |
|-------|-------------------------|------------------|---------------|--|
|       |                         | очная форма      | заочная/очно- |  |
|       |                         |                  | заочная форма |  |
| 1     | Курсом не предусмотрены |                  |               |  |

#### 8. ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

| № п/п  | Название темы                             | Количес     | ство часов    |
|--------|-------------------------------------------|-------------|---------------|
|        |                                           | очная форма | заочная/очно- |
|        |                                           |             | заочная форма |
| 1.     | Основные понятия и определения            | 1           | 0,5           |
|        | термодинамики.                            |             | 0,3           |
| 2.     | Газовые смеси.                            | 1           | 0,5           |
| 3.     | Теплоемкость идеальных газов и их смесей. | 2           | 0,5           |
| 4.     | Первый закон термодинамики.               | 2           | 0,5           |
| 5.     | Анализ термодинамических процессов        | 2           |               |
| 6.     | Второй закон термодинамики.               | 2           |               |
| 7.     | Реальные газы. Уравнение состояния        | 2           | 0,5           |
|        | реальных газов.                           |             | 0,3           |
| 8.     | Термодинамические процессы реальных       | 2           | 0,5           |
|        | газов и водяного пара.                    |             | 0,3           |
| 9.     | Циклы газовых двигателей.                 | 2           | 0,5           |
| 10.    | Циклы паросиловых установок,              | 2           | 0,5           |
|        | холодильных машин и тепловых насосов.     |             | 0,3           |
| 11.    | Влажный воздух.                           | 2           |               |
| 12.    | Основы кондиционирования.                 | 2           |               |
| 13.    | Введение в теплообмен.                    | 2           | 0,5           |
| 14.    | Теплопроводность.                         | 2           | 0,5           |
| 15.    | Нестационарная теплопроводность.          | 2           | 0,5           |
| 16.    | Конвективный теплообмен.                  | 1           | 0,5           |
| 17.    | Теплообмен излучением.                    | 1           |               |
| 18.    | Сложный теплообмен.                       | 1           |               |
| 19.    | Теплообменные аппараты                    | 1           |               |
| Всего: |                                           | 32          | 6             |

# 9. САМОСТОЯТЕЛЬНАЯ РАБОТА

| номер | Название темы                               | Количест                | во часов                       |
|-------|---------------------------------------------|-------------------------|--------------------------------|
| п/п   |                                             | Очная форма<br>обучения | заочная/очно-<br>заочная форма |
|       | Смысловой модуль I. Основы техничес         | ской термодинами        | ки                             |
| 1     | Основные понятия и определения              | 4                       | 10,7                           |
|       | термодинамики.                              |                         | 10,7                           |
| 2     | Газовые смеси.                              | 4                       | 6                              |
| 3     | Теплоемкость идеальных газов и их смесей.   | 4                       | 6                              |
| 4     | Первый закон термодинамики.                 | 4                       | 6                              |
| 5     | Анализ термодинамических процессов          | 4                       | 6                              |
| 6     | Второй закон термодинамики.                 | 4                       | 6                              |
|       | Смысловой модуль II. Реали                  | ьные газы               |                                |
| 7     | Реальные газы. Уравнение состояния реальных | 4                       | 5                              |
|       | газов.                                      |                         | 3                              |
| 8     | Термодинамические процессы реальных газов   | 2                       | 5                              |
|       | и водяного пара.                            |                         | 3                              |
| 9     | Циклы газовых двигателей.                   | 2                       | 5                              |
| 10    | Циклы паросиловых установок, холодильных    | 2                       | 5                              |
|       | машин и тепловых насосов                    |                         | 3                              |
| 11    | Влажный воздух.                             | 2                       | 5                              |
| 12    | Основы кондиционирования                    | 1                       | 5                              |

|    | Смысловой модуль III. Теплопередача |    |       |  |  |  |  |  |  |  |
|----|-------------------------------------|----|-------|--|--|--|--|--|--|--|
| 13 | Введение в теплообмен.              | 2  | 5     |  |  |  |  |  |  |  |
| 14 | Теплопроводность.                   | 2  | 5     |  |  |  |  |  |  |  |
| 15 | Нестационарная теплопроводность.    | 2  | 5     |  |  |  |  |  |  |  |
| 16 | Конвективный теплообмен.            | 2  | 5     |  |  |  |  |  |  |  |
| 17 | Теплообмен излучением.              | 2  | 10    |  |  |  |  |  |  |  |
| 18 | Сложный теплообмен.                 | 1  | 10    |  |  |  |  |  |  |  |
| 19 | Теплообменные аппараты              | 1  | 10    |  |  |  |  |  |  |  |
|    | Всего                               | 49 | 120,7 |  |  |  |  |  |  |  |

# 10. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации учебной дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- 1) для слабовидящих:
  - лекции оформляются в виде электронного документа;
- письменные задания оформляются увеличенным шрифтом или заменяются устным ответом;
  - 2) для глухих и слабослышащих:
    - лекции оформляются в виде электронного документа;
    - письменные задания выполняются на компьютере в письменной форме;
- зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования с использованием Moodle.
  - 3) для лиц с нарушениями опорно-двигательного аппарата:
    - лекции оформляются в виде электронного документа;
    - письменные задания заменяются устным ответом;
    - зачёт проводятся в устной форме.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для слепых и слабовидящих:
  - в печатной форме увеличенным шрифтом;
  - в форме электронного документа;
  - в форме аудиофайла.
- 2) для глухих и слабослышащих:
  - в печатной форме;
  - в форме электронного документа.
- 3) для обучающихся с нарушениями опорно-двигательного аппарата:
  - в печатной форме;
  - в форме электронного документа;

#### 11. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

#### Темы рефератов

- 1. Третий закон термодинамики. Формулировка и основное содержание.
- 2. Эксергия и эксергетичекий баланс термодинамической системы.
- 3. Схема и цикл работы (в p-v и T-s координатах) турбореактивного двигателя.
- 4. Схемы и цикл работы (в p-v и T-s координатах) воздушной холодильной машины.
- 5. Схема и цикл работы (р-v и Т-s координатах) паровой холодильной машины.
- 6. Реальные циклы газотурбинных установок. Примеры внедрения.
- **7.** Действительные циклы поршневых двигателей внутреннего сгорания. Определение КПД двигателя.
- 8. Способы повышения мощности двигателей внутреннего сгорания.
- 9. Схема и цикл работы двигателя внешнего сгорания двигатель Стерлинга.
- 10. Конструкция современных экологичнобезопастных двигателей. Область применения.
- 11. Теплопроводность при нестационарном тепловом режиме.
- 12. Особенности теплоотдачи при изменении агрегатного состояния вещества.
- **13.** Основные критериальные числа тепломассообмена. Методика определения коэффициента тепломассопереноса.
- 14. Основные уравнения тепломассопереноса. Число Льюиса.
- 15. Особенности термодинамических процессов в градирнях.
- 16. Примеры конструкций теплообменников с непосредственным контактом сред.
- 17. Расчёт процессов в непрямых выпарных охладителях (НВО)
- 18. Расчёт процессов в прямых выпарных охладителях (ПВО).
- 19. Анализ открытых термодинамических систем.
- 20. Основные закономерности потока идеального газа в соплах и диффузорах.
- 21. Уравнения, описывающие процессы дросселирования газов и паров.
- **22.** Работа с фазовыми таблицами ASHRAE (American Society of Heating, Refrigeration, and Air-Conditioning Engineers);
- 23. Изучение схемы и принципа работы двигателя Стирлинга.

#### Контрольная работа

#### Смысловой модуль 1.Основы технической термодинамики

#### Задача 1.1

Смесь идеальных газов имеет начальные параметры  $p_1$ ,  $t_1$ , нагревается при постоянном объеме до  $t_2$ , а затем охлаждается при постоянном давлении до начальной температуры  $t_1$ .

<u>Определить</u>: объемный состав газовой смеси; конечное давление и объем смеси; работу (L), теплоту (Q) и изменение внутренней энергии ( $\Delta U$ ), энтальпии ( $\Delta I$ ) и энтропии ( $\Delta S$ ) смеси в процессах.

Изобразить процессы в p-v и T-s диаграммах.

Данные для решения задачи выбрать из таблицы 1.1.

Таблица 1.1 – Исходные данные к задаче 1.1

| Предпослед-<br>няя цифра | Масса компонентов газовой<br>смеси,кг            |       |        |        |       | Давление,<br><i>МПа</i> | Последняя<br>цифра | Темпер | ратура, |
|--------------------------|--------------------------------------------------|-------|--------|--------|-------|-------------------------|--------------------|--------|---------|
|                          | <del>                                     </del> |       |        |        |       | wiiu                    |                    | '      |         |
| шифра                    | $N_2$                                            | $O_2$ | $CO_2$ | $H_2O$ | $H_2$ | $p_1$                   | шифра              | $t_1$  | $t_2$   |
| 0                        | 2,5                                              | ı     | 1,8    | 0,7    | 0,3   | 1                       | 0                  | 400    | 800     |
| 1                        | 3,0                                              | 1,0   | 4,0    | 1      | 0,5   | 2                       | 1                  | 100    | 600     |
| 2                        | 4,2                                              | 0,8   | 4,0    | 0,5    | 1     | 3                       | 2                  | 300    | 900     |
| 3                        | -                                                | 1,2   | 2,5    | 0,9    | 1,1   | 4                       | 3                  | 100    | 300     |

| 4 | 3,7 | -   | 3,0 | 0,3 | 1,2 | 8 | 4 | 200 | 500 |
|---|-----|-----|-----|-----|-----|---|---|-----|-----|
| 5 | 2,8 | 1,1 | 1   | 0,8 | 3,2 | 6 | 5 | 200 | 800 |
| 6 | 2,9 | 1,4 | 2,7 | 1   | 3,0 | 7 | 6 | 100 | 700 |
| 7 | -   | 2,0 | 5,2 | 3,7 | 1,8 | 5 | 7 | 200 | 700 |
| 8 | 4,0 | -   | 3,2 | 2,5 | 2,0 | 4 | 8 | 400 | 900 |
| 9 | 3,5 | 0,9 | -   | 0,6 | 4,0 | 3 | 9 | 100 | 400 |

#### Задача 1.2

Для теоретического цикла газового поршневого двигателя внутреннего сгорания (ДВС) с изохорно-изобарным подводом теплоты по заданным значениям начального давления  $p_I$  и температуры  $t_I$ , степени сжатия  $\varepsilon$ , степени повышения давления  $\lambda$  и степени предварительного расширения  $\rho$  определить параметры состояния p, v, T в характерных точках цикла, полезную работу и термический КПД.

<u>Изобразить</u> цикл ДВС в *p-v* и *T-s* диаграммах.

Данные необходимые для расчета задачи выбрать из таблицы 1.2.

Таблица 1.2 – Исходные данные для задачи 1.2

| Предпос- |                 |         |         | Последняя |                        |     |        |
|----------|-----------------|---------|---------|-----------|------------------------|-----|--------|
| ледняя   | Рабочее         | $p_1$ , | $t_1$ , | цифр      | $oldsymbol{arepsilon}$ | λ   | $\rho$ |
| цифра    | тело            |         |         | шифра     |                        |     |        |
| шифра    |                 | кПа     | $^{O}C$ |           |                        |     |        |
| 0        | $H_2O$          | 96      | 22      | 0         | 17                     | 1,6 | 1,3    |
| 1        | $N_2$           | 97      | 24      | 1         | 16                     | 1,7 | 1,3    |
| 2        | He              | 95      | 18      | 2         | 19                     | 1,3 | 1,5    |
| 3        | Воздух          | 101     | 15      | 3         | 15                     | 1,5 | 1,4    |
| 4        | CH <sub>4</sub> | 98      | 32      | 4         | 14                     | 1,8 | 1,3    |
| 5        | $O_2$           | 99      | 30      | 5         | 13                     | 1,7 | 1,3    |
| 6        | $CO_2$          | 100     | 23      | 6         | 15                     | 1,6 | 1,4    |
| 7        | Воздух          | 97      | 25      | 7         | 16                     | 1,4 | 1,6    |
| 8        | $N_2$           | 96      | 20      | 8         | 17                     | 1,5 | 1,7    |
| 9        | CO              | 95      | 17      | 9         | 18                     | 1,3 | 1,4    |

#### Смысловой модуль 2. Реальные газы

#### Задача 2.1

Паросиловая установка работает по циклу Ренкина. Давление пара перед турбиной  $p_1$ , его температура  $t_1$ . Адиабатное расширение пара в турбине происходит до атмосферного давления  $p_2$ . Определить КПД паросиловой установки. Как изменится КПД, если давление и температуру увеличить соответственно до $p'_1$  и  $t'_1$ , а на выходе пара из турбины установить конденсатор, в котором давление  $p'_2$ ?

<u>Изобразить</u> процессы в *i-s* – диаграмме водяного пара.

Данные, необходимые для решения задачи, выбрать из таблицы 2.1.

Таблица 2.1 – Исходные данные к задаче 2.1

| Предпос-     | Давление   | Темпе-   | Давление   | Послед-   | Давление   | Темпе-   | Давление   |
|--------------|------------|----------|------------|-----------|------------|----------|------------|
| ледняя цифра | пара перед | ратура   | пара после | няя цифра | пара перед | ратура   | пара после |
| шифра        | турбиной,  | пара, °С | турбины,   | шифра     | турбиной,  | пара, °С | турбины,   |
|              | МПа        |          | МПа        |           | МПа        |          | МПа        |
|              | $p_1$      | $t_1$    | $p_2$      |           | $p_1'$     | $t_1'$   | $p_2'$     |
|              |            |          | - <b>2</b> |           |            | •        | - 2        |
|              |            |          |            |           |            |          |            |
| 0            | 4          | 310      | 0,1        | 0         | 15         | 550      | 0,05       |

| 1 | 8  | 350 | 0,13 | 1 | 17   | 580 | 0,04  |
|---|----|-----|------|---|------|-----|-------|
| 2 | 6  | 330 | 0,12 | 2 | 14   | 570 | 0,03  |
| 3 | 10 | 420 | 0,11 | 3 | 18   | 550 | 0,02  |
| 4 | 9  | 360 | 0,1  | 4 | 20   | 610 | 0,01  |
| 5 | 13 | 310 | 0,11 | 5 | 18,5 | 630 | 0,009 |
| 6 | 12 | 440 | 0,1  | 6 | 16   | 550 | 0,007 |
| 7 | 3  | 340 | 0,13 | 7 | 17,5 | 640 | 0,005 |
| 8 | 11 | 320 | 0,1  | 8 | 15,5 | 530 | 0,01  |
| 9 | 5  | 430 | 0,12 | 9 | 17   | 600 | 0,05  |

 $\it Указание$ : Рекомендовано расчет выполнить в компьютерной программе «Диаграмма HS для воды и водяного пара».

Задача 2.2

Водяной пар, имеет начальные параметры  $p_1$ ,  $x_1$ , нагревается при постоянном давлении до температуры  $t_2$ , затем дросселируется до давления  $p_3$ . При давлении $p_3$  пар подается в сопло Лаваля, где расширяется до давления  $p_4$ . Определить: количество теплоты, подведенное к пару в процессе 1-2; изменение внутренней энергии и температуру в процессе дросселирования 2-3; конечные параметры и скорость на выходе из сопла Лаваля; расход пара в процессе изоэнтропийного истечения 3-4, если задана площадь минимального сечения сопла  $f_{min}$ .

<u>Изобразить</u> процессы в *i-s*— диаграмме водяного пара. Данные, необходимые для решения задачи, выбрать из таблицы 2.2.

Таблица 2.2 – Исходные данные к задаче 2.2

| Предпос- | Давление  | Степень | Темпера-   | Последняя | Площадь               | Давление  |
|----------|-----------|---------|------------|-----------|-----------------------|-----------|
| ледняя   | пара, МПа | сухости | тура пара, | цифра     | минималь-             | пара, кПа |
| цифра    |           |         | °C         | шифра     | НОГО                  |           |
| шифра    |           |         |            |           | пересечения           |           |
|          |           |         |            |           | сопла, м <sup>2</sup> |           |
|          | $p_1$     | $x_1$   | t 2        |           | $f_{min}.10^4$        | $p_4$     |
| 0        | 4         | 0,9     | 310        | 0         | 10                    | 5         |
| 1        | 8         | 0,85    | 350        | 1         | 15                    | 4         |
| 2        | 6         | 0,8     | 330        | 2         | 20                    | 3         |
| 3        | 5         | 0,9     | 420        | 3         | 45                    | 5         |
| 4        | 9         | 0,86    | 360        | 4         | 30                    | 3         |
| 5        | 5         | 0,9     | 310        | 5         | 35                    | 4         |
| 6        | 6         | 0,95    | 440        | 6         | 25                    | 4,5       |
| 7        | 3         | 0,87    | 340        | 7         | 50                    | 5,5       |
| 8        | 5,5       | 0,9     | 320        | 8         | 55                    | 5         |
| 9        | 5         | 0,85    | 430        | 9         | 18                    | 3         |

Задача 2.3

Используя i-s-диаграмму, определить начальные термические параметры и количество теплоты, необходимое для перехода m кг сухого насыщенного пара в перегретый пар с параметрами p, t, если этот процесс проходит при: 1) постоянной температуре; 2) постоянном объеме; 3) постоянном давлении.

Данные, необходимые для решения задачи, выбрать из таблицы 2.3.

Таблица 2.3 – Исходные данные к задаче 2.3

| Предпоследняя цифра шифра | 0   | 1   | 2   | 3   | 4    | 5   | 6   | 7   | 8   | 9   |
|---------------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| Давление пара $p$ , МПа   | 2,0 | 3,0 | 1,8 | 1,0 | 0,55 | 2,5 | 1,0 | 3,0 | 1,4 | 1,5 |

| Температура пара <b>t</b> , °C | 400 | 530 | 420 | 200 | 160 | 210 | 380 | 180 | 240 | 470 |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Последняя цифра шифра          | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| Масса пара, кг т               | 20  | 15  | 30  | 45  | 17  | 22  | 16  | 23  | 21  | 25  |

*Указание*: Рекомендовано расчет выполнить в компьютерной программе «Диаграмма HS для воды и водяного пара».

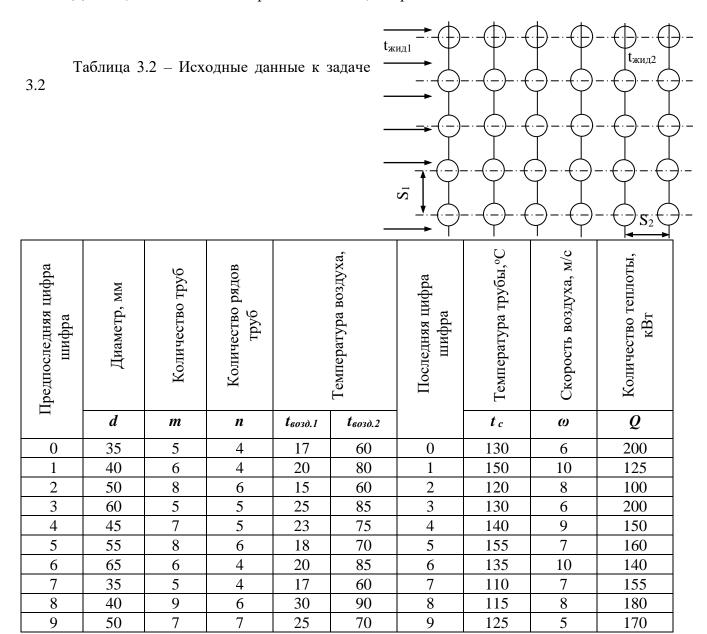
#### Смысловой модуль 3. Теплопередача

#### Задача 3.1

Трубопровод диаметром  $d \times \delta_I$  и длиной L с коэффициентом теплопроводности  $\lambda_I$ =45,4 Вт/(м·К), в котором течет теплоноситель с температурой  $t_I$ , покрыт двухслойной изоляцией: слой стекловаты ( $\delta_2$ ,  $\lambda_2$ =0,038Вт/(м·К)) и слой мипоры ( $\delta_3$ ,  $\lambda_3$  =0,041 Вт/(м·К)). Учитывая то, что  $\alpha_I$  и  $\alpha_2$  — коэффициенты теплоотдачи,  $t_{cp.}$  — температура окружающей среды, определить линейные коэффициенты термического сопротивления, линейную плотность теплового потока с изоляцией и без нее, температуру на границе соприкосновения слоев изоляции. Сравнить тепловые потоки до и после нанесения изоляции.

Данные, необходимые для решения задачи, выбрать из таблицы 3.1.

Таблица 3.1 – Исходные данные к задаче 3.1


| Предпоследняя цифра шифра | Диаметр, мм | Толщина трубы, мм | Толщина стекловаты, мм | Толщина мипори, мм | Температура теплоносителя,<br>°C | Последняяцифра шифра | Длина трубы, мм | Температура среды,°С | Коэффициент теплоотдачи, ${ m Br}/({ m M}^2{ m K})$ | Коэффициент теплоотдачи, ${\rm Br}({\rm M}^2{\rm K})$ |
|---------------------------|-------------|-------------------|------------------------|--------------------|----------------------------------|----------------------|-----------------|----------------------|-----------------------------------------------------|-------------------------------------------------------|
|                           | d           | $\delta_{l}$      | $\delta_2$             | $\delta_3$         | $t_1$                            |                      | L               | t cep.               | $\alpha_1$                                          | $\alpha_2$                                            |
| 0                         | 40          | 5                 | 14                     | 12                 | 22                               | 0                    | 2,5             | -3                   | 5                                                   | 50                                                    |
| 1                         | 57          | 5                 | 14                     | 10                 | 20                               | 1                    | 3,0             | 0                    | 7                                                   | 120                                                   |
| 2                         | 38          | 3                 | 16                     | 15                 | 23                               | 2                    | 2,0             | -5                   | 8                                                   | 100                                                   |
| 3                         | 60          | 5                 | 15                     | 14                 | 25                               | 3                    | 1,0             | -5                   | 16                                                  | 250                                                   |
| 4                         | 76          | 5                 | 15                     | 13                 | 18                               | 4                    | 0,8             | -10                  | 9                                                   | 157                                                   |
| 5                         | 85          | 5                 | 16                     | 15                 | 16                               | 5                    | 4,0             | -8                   | 7                                                   | 260                                                   |
| 6                         | 40          | 4                 | 14                     | 8                  | 15                               | 6                    | 5,0             | -7                   | 10                                                  | 240                                                   |
| 7                         | 66          | 4                 | 14                     | 12                 | 14                               | 7                    | 1,8             | -15                  | 17                                                  | 355                                                   |
| 8                         | 72          | 5                 | 16                     | 14                 | 18                               | 8                    | 3,2             | 0                    | 8                                                   | 80                                                    |
| 9                         | 45          | 3                 | 17                     | 10                 | 20                               | 9                    | 1,5             | 2                    | 15                                                  | 270                                                   |

Задача 3.2

Трубчатый воздухонагреватель предполагается выполнить из труб диаметром d, расположенных в коридорном порядке с поперечным и продольными шагами  $S_1=S_2=2,5d$ . Количество труб в одном ряду поперек потока выбрано m, количество рядов n (см. рис. к задаче).

Температуры воздуха, поступающего в подогреватель,  $t_{603\partial I}$  и на выходе из подогревателя  $t_{603\partial 2}$ . Температура внешней поверхности труб задана и равна  $t_c$ . Какой длины должны быть трубы, чтобы при скорости воздуха в узком сечении пучка  $\omega$ м/с количество теплоты, которое передается воздуху, составляло Q кВт.

Данные, необходимые для решения задачи, выбрать из таблицы 3.2.



<u>Указание</u>: При решении задачи параметры воздуха для расчета коэффициентов теплоотдачи принять из таблиц.

#### Задача 3.3

Теплообменник типа «труба в трубе» изготовлен из внутренней стальной трубы длиной L, диаметром  $d_2/d_1$  и внешней трубы диаметром  $D_3$ . Греющий теплоноситель с температурой  $t'_1$ в количестве  $G_1$  подается во внутреннюю трубу, а нагреваемый теплоноситель, с температурой $t'_2$  в количестве  $G_2$  поступает в наружную трубу, где

нагревается на 40°C. Определить исходные температуры обоих теплоносителей и количество передаваемой теплоты по прямоточной и противоточной схеме движения. При расчете коэффициентов теплоотдачи со стороны греющей среды и нагреваемой жидкости, за определяющие принять входные температуры теплоносителей.

Данные, необходимые для решения задачи, выбрать из таблицы 3.3.

Таблица 3.3 – Исходные данные к задаче 3.3

| Пред-      | Греющий         |           |                    |               | Послед-     | Среда,  |         |           |         |                          |         |
|------------|-----------------|-----------|--------------------|---------------|-------------|---------|---------|-----------|---------|--------------------------|---------|
| послед-    | теплоно-        | $G_{I}$ , | $t_{I}^{\prime}$ , | L,            | <b>RR</b> H | которая | $G_2$ , | $t_2'$ ,  | $d_1$ , | $d_2$ ,                  | $D_3$ , |
| <b>RRH</b> | ситель          | кг/с      | ${}^{\circ}C$      | $\mathcal{M}$ | цифра       | нагре-  | кг/с    | ${}^{o}C$ | мм      | $\mathcal{M}\mathcal{M}$ | мм      |
| цифра      |                 |           | C                  |               |             | вается  |         | C         |         |                          |         |
| 0          | Вода            | 1,5       | 95                 | 6,0           | 0           | Вода    | 1,25    | 15        | 50      | 56                       | 76      |
| 1          | Вода            | 1,6       | 90                 | 2,0           | 1           | Воздух  | 1,55    | 30        | 80      | 86                       | 100     |
| 2          | Водяной пар     | 3,0       | 200                | 1,5           | 2           | Воздух  | 1,5     | 35        | 60      | 64                       | 85      |
| 3          | Вода            | 1,55      | 135                | 1,0           | 3           | Вода    | 0,75    | 20        | 50      | 64                       | 80      |
| 4          | Водяной пар     | 2,65      | 300                | 2,5           | 4           | Воздух  | 0,8     | 30        | 95      | 100                      | 130     |
| 5          | Вода            | 2,75      | 98                 | 3,0           | 5           | Вода    | 0,9     | 25        | 70      | 82                       | 120     |
| 6          | Дымовые<br>газы | 1,6       | 200                | 4,0           | 6           | Воздух  | 1,2     | 35        | 45      | 51                       | 70      |
| 7          | Водяной пар     | 2,0       | 250                | 3,5           | 7           | Вода    | 1,3     | 20        | 75      | 85                       | 110     |
| 8          | Дымовые<br>газы | 2,25      | 300                | 2,25          | 8           | Воздух  | 0,45    | 33        | 63      | 73                       | 91      |
| 9          | Вода            | 3,25      | 160                | 3,8           | 9           | Воздух  | 1,3     | 10        | 75      | 87                       | 95      |

# 12. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

Система оценивания по учебной дисциплине по очной форме обучения\*

| Форма контроля                               | Макс. количес  | ство баллов |
|----------------------------------------------|----------------|-------------|
|                                              | За одну работу | Всего       |
| Текущий контроль:                            |                |             |
| - дискуссия, устный опрос, собеседование (по | 1              | 5           |
| каждой теме дисциплины)                      |                |             |
| - реферат (по темам, изучаемым в дисциплине) | 5              | 5           |
| - тестирование (по каждому модулю)           |                |             |
| - разноуровневые задачи и задания (по каждой | 2              | 10          |
| теме дисциплины)                             |                |             |
| - текущий модульный контроль                 | 5              | 20          |
|                                              |                |             |
| Промежуточная аттестация                     | экзамен        | 60          |
| Итого за семестр                             | 100            | )           |

<sup>\*</sup> в соответствии с утвержденными оценочными материалами по учебной дисциплине

#### Перечень вопросов к экзамену:

#### Смысловой модуль I. Основы технической термодинамики

- 1. Основные понятия и исходные положения технической термодинамики.
- 2. Термические параметры состояния рабочих тел. Единицы измерения. Уравнение состояния идеальных газов.
- 3. Калорические параметры состояния рабочих тел. Единицы измерения.
- 4. Газовые смеси. Законы газовых смесей. Молекулярная масса газовой смеси.

- Уравнение состояния для газовой смеси и компонентов.
- 5. Теплоемкость идеальных газов. Виды теплоемкостей. Связь между ними. Расчет количества теплоты.
- 6. Зависимость теплоемкости идеальных газов от температуры. Расчет количества тепла через средние теплоемкости.
- 7. Формулировки и математическое выражение первого закона термодинамики.
- 8. Теплота и работа как функции процесса. Аналитическое выражение теплоты и работы через параметры состояния. Графическое изображение.
- 9. Общая схема исследования термодинамических процессов идеального газа.
- 10. Аналитическое исследование изохорного процесса.
- 11. Аналитическое исследование изобарного процесса.
- 12. Аналитическое исследование изотермического процесса.
- 13. Аналитическое исследование адиабатного процесса.
- 14. Аналитическое исследование политропного процесса

#### Смысловой модуль II. Реальные газы.

- 15. Реальные газы. Основные понятия и определения. Термодинамические диаграммы реальных газов.
- 16. *I-s* диаграмма состояния водяного пара. Определение параметров состояния водяного пара.
  - 17. Построение процессов реальных газов и их расчет с помощью фазовых диаграмм.
- 18. Основные положения термодинамики потока рабочего тела (уравнение неразрывности струи, первый закон термодинамики для потока).
- 19.Понятие о сопловом и диффузорном течении газа или пара. Скорость истечения, секундный расход, располагаемое теплопадение при адиабатном истечении.
- 20. Критические параметры истечения. Сопло Лаваля. Расчет процесса истечения через сопло Лаваля.
  - 21. Расчет процесса истечения водяного пара с помощью i-s диаграмм.
- 22. Дросселирование газов и паров. Сущность процесса и его практическое использование. Графическое изображение процесса в тепловых диаграммах.
- 23. Второй закон термодинамики, его сущность и формулировки. Эффективность шиклов.
  - 24. Прямой и обратный циклы Карно. Научное значение цикла Карно.
  - 25. Классификация тепловых машин.
- 26. Теоретический цикл ДВС с изохорным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 27. Теоретический цикл ДВС с изобарным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 28. Теоретический цикл ДВС со смешанным подводом тепла. Тепловой расчет цикла. Термический КПД.
- 29. Принципиальная схема и теоретический цикл газотурбинной установки. Тепловой расчет цикла. Термический КПД.
- 30. Принципиальная схема паросиловой установки, работающей по циклу Ренкина. Термический КПД цикла.
- 31. Принципиальная схема и цикл воздушной холодильной машины. Тепловой расчет цикла. Холодильный коэффициент.
- 32. Принципиальная схема и цикл паровой компрессионной холодильной машины. Тепловой расчет цикла. Холодильный коэффициент.
- 33. Принципиальная схема и работа абсорбционной холодильной машины. Коэффициент использования теплоты.
- 34. Принципиальная схема и работа пароэжекторной холодильной машины. Коэффициент использования теплоты.
  - 35. Что такое влажный воздух?

- 36. Какая разница между насыщенным и ненасыщенным влажным воздухом?
- 37. Закон Дальтона о влажном воздухе.
- 38. Что называется абсолютной влажностью? Какая разница абсолютной влажности от влажного содержания?
  - 39. С каких изолиний составляется *i-d* диаграмма?
  - 40. Изображение основных процессов в *i-d* диаграмме влажного воздуха
  - 41. По каким законам происходит процесс нагревания влажного воздуха?
- 42. По каким законам выполняется процесс увлажнения воздуха в оросительной камере?
- 43. Поверхностные воздухоохладители. Их назначение и конструкция. Изображение в диаграмме процессов, проходящих в поверхностных воздухоохладителях
  - 44. Тепловой и влажностной балансы кондиционируемого помещения.
  - 45. Как рассчитать теплопритоки в зал ресторана?
  - 46. Как рассчитать теплопритоки в горячий цех комбината питания?
  - 47. Что такое влагопритоки? Общая методика расчета влагопритоков в помещение.
- 48. Что входит в понятия «кондиционирование» воздуха и «система кондиционирования воздуха»?
  - 49. Схема технологического кондиционирования.
  - 50. Схема комфортно-технологического кондиционирования.
  - 51. Схема комфортного кондиционирования.
  - 52. Типы кондиционеров.

#### Смысловой модуль III. Теплопередача

- 53. Основные понятия и определения теории теплообмена. Виды переноса теплоты.
- 54. Теплообмен теплопроводностью. Закон Фурье для стационарного режима. Коэффициент теплопроводности.
- 55. Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности.
  - 56. Теплопроводность плоской одно- и многослойной стенки при стационарном режиме.
- 57. Теплопроводность цилиндрической одно- и многослойной стенки при стационарном режиме.
- 58. Конвективный теплообмен. Закон Ньютона Рихмана. Коэффициент теплоотдачи. Факторы, влияющие на коэффициент.
- 59. Сущность, основные понятия и определения теории подобия. Критерии подобия. Основные критерии подобия конвективного теплообмена.
- 60. Конвективный теплообмен при вынужденном, свободном движении и фазовых переходах жидкости. Общий вид критериальных уравнений.
- 61. Теплообмен изучением. Основные понятия. Законы теплового излучения. Приведенный коэффициент излучения.
- 62. Теплопередача как частный случай сложного вида теплообмена. Коэффициент теплопередачи. Термическое сопротивление.
  - 63. Назначение и классификация теплообменных аппаратов.
- 64. Теплопередача в теплообменных аппаратах при переменной температуре теплоносителей. Баланс тепла. Средний температурный напор.
  - 65. Конструкторский и поверочный расчет теплообменных аппаратов.

#### 13. РАСПРЕДЕЛЕНИЕ БАЛЛОВ, КОТОРЫЕ ПОЛУЧАЮТ ОБУЧАЮЩИЕСЯ

| Максимальное количество баллов за текущий контроль и самостоятельную работу | Максималь<br>ная сумма<br>баллов |
|-----------------------------------------------------------------------------|----------------------------------|
|                                                                             | T a C a B a                      |

| CM | 1ЫСЛ | ЮВО | й мо | дул | ь 1. | CM | Смысловой модуль 2. |   |    |    | Смысловой модуль 3. |    |    |    |    |    |    |    |    |    |     |
|----|------|-----|------|-----|------|----|---------------------|---|----|----|---------------------|----|----|----|----|----|----|----|----|----|-----|
| T  | T    | T   | T    | T   | T    | T  | T                   | T | T  | T  | T                   | T  | T  | T  | T  | T  | T  | T  |    |    |     |
| 1  | 2    | 3   | 4    | 5   | 6    | 7  | 8                   | 9 | 10 | 11 | 12                  | 13 | 14 | 15 | 16 | 17 | 18 | 19 |    |    |     |
| 1  | 2    | 2   | 2    | 1   | 2    | 2  | 3                   | 2 | 3  | 2  | 3                   | 2  | 2  | 3  | 2  | 2  | 2  | 2  |    |    |     |
|    |      | 1   | 10   |     |      |    |                     | 1 | 15 |    |                     |    |    |    | 15 |    |    |    | 40 | 60 | 100 |

# Соответствие государственной шкалы оценивания академической успеваемости

| Сумма баллов за все виды учебной деятельности | По государственной шкале  | Определение                                                                       |
|-----------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|
| 90 - 100                                      | «Отлично» (5)             | отличное выполнение с незначительным количеством неточностей                      |
| 80 - 89                                       | «Хорошо» (4)              | в целом правильно выполненная работа с незначительным количеством ошибок (до 10%) |
| 75 - 79                                       |                           | в целом правильно выполненная работа с незначительным количеством ошибок (до 15%) |
| 70 - 74                                       | «Удовлетворительно» (3)   | неплохо, но со значительным количеством недостатков                               |
| 60 - 69                                       |                           | выполнение удовлетворяет минимальные критерии                                     |
| 35 - 59                                       | «Неудовлетворительно» (2) | с возможностью повторной аттестации                                               |
| 0 - 34                                        |                           | с обязательным повторным изучением дисциплины                                     |

#### 14. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

#### Основная литература

- 1. Теплотехника [ Электронный ресурс ] : учебник для вузов / А. А. Александров [и др.] ; ред. А. М. Архарова, В. Н. Афанасьева . 5-е изд. М. : МГТУ им. Н. Э. Баумана, 2017 . Локал. компьютер сеть НБ ДонНУЭТ.
- 2. Теплообмен: теория и практика [ Текст ] : рекоменд. М-вом образования и науки ДНР как учеб. для высш. образоват. учреждений / [коллектив авт.: В. В. Карнаух, А. Б. Бирюков, С. И. Гинкул , К. А. Ржесик, П. А. Гнитиев] ; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, ГОУ ВПО "Донец. нац. техн. ун-т" . Донецк : ДонНУЭТ, 2018 . 327, [1] с. : табл., рис.
- 3. Стоянов, Н. И. Теоретические основы теплотехники (техническая термодинамика и тепломассообмен): учебное пособие / Н. И. Стоянов, С. С. Смирнов, А. В. Смирнова. Ставрополь: Северо-Кавказский федеральный университет, 2014. 226 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/63139.html (дата обращения: 21.09.2020). Режим доступа: для авторизир. пользователей.

#### Дополнительная литература

- 1. Амирханов, Д. Г. Техническая термодинамика: учебное пособие / Д. Г. Амирханов, Р. Д. Амирханов; под редакцией Е. И. Шевченко. Казань: Казанский национальный исследовательский технологический университет, 2014. 264 с. ISBN 978-5-7882-1664-5. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/63486.html (дата обращения: 21.09.2020). Режим доступа: для авторизир. пользователей
- 2. Холодильное оборудование предприятий пищевой промышленности [Текст] : учеб. пособие / В. В. Осокин [и др.] ; М-во образования и науки Украины, Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, Одес. нац. акад. пищевых технологий. Донецк, О. : [ДонНУЭТ], 2011. 255 c.

### Электронные ресурсы:

- 1. Карнаух В.В. Теплотехника. Тепломассообмен [ Электронный ресурс ]: методические указания для самостоятельного изучения дисцисплин для студ. напр. подг. 13.03.03 Энергетическое машиностроение (Профиль: Холодильные машины и установки), 15.03.02 Технологические машины и оборудование (Профиль: Оборудование перерабатывающих и пищевых производств), 19.03.04 Технология продукции и организация общественного питания, 19.03.03 Продукты питания животного происхождения, 19.03.02 Продукты питания из растительного сырья образовательного уровня бакалавриат, очной и заочной форм обучения/ В.В.Карнаух, Б.Ю.Байда Донецк: ДОННУЭТ, 2022. 90с. Локал. компьютер сеть НБ ДонНУЭТ.
- 2. Теплотехника. Техническая термодинамика [ Электронный ресурс ]: методические указания для самостоятельного изучения дисциплины для студентов направления подготовки 13.03.03 Энергетическое машиностроение (Профили: Холодильные машины и установки, Энергоэффективность и энергосбережение на промышленном предприятии, Технологии проектирования энергетических систем холодильной и криогенной техники, Автоматические системы энергетических установок), 15.03.02 Технологические машины и оборудование (Профиль: Оборудование перерабатывающих и пищевых производств) очной и заочной форм обучения / В.В. Карнаух, Д.А. Угланов, Ю.В. Пьянкова, А.С. Коновал Донецк: ДОННУЭТ, 2022. 90 с. Локал. компьютер сеть НБ ДонНУЭТ.
- 3. Карнаух В.В. Техническая термодинамика [ Электронный ресурс ] : 19.03.04 «Технология продукции и организация обществ. питания» (спец. Технологии в ресторан. хозве) образоват. уровня бакалавриат, оч. и заоч. форм обучения : конспект лекций для студентов направлений подготовки 13.03.03 «Энергет. машиностроение» (профиль «Холодил. машины и установки»), 15.03.02 «Технолог. машины и оборуд.» (профиль «Оборуд. перераб. и пищ. п-в») / В. В. Карнаух ; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. холодильной и торговой техники имени Осокина В.В. Донецк : ДонНУЭТ, 2019 . Локал. компьютер сеть НБ ДонНУЭТ.
- 4. Карнаух, В. В. Теплотехника [ Электронный ресурс ] : метод. указания для для самостоятельного изучения модуля «Техническая термодинамика», для студентов направлений подготовки 15.03.02 «Технолог. машины и оборуд.» (профиль «Оборуд. перераб. и пищ. пр-в» : направления подготовки 13.03.03 «Энергетическое машиностроение» (профиль «Холодильные машины и установки»), 19.03.04 «Технология продукции и организация общественного питания», образовательного уровня бакалавриат, оч. и заоч. форм обучения / В. В. Карнаух ; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. холодил. и торговой техники . Донецк : ДонНУЭТ, 2017 . Локал. компьютер. сеть НБ ДонНУЭТ.
- 5. Теплотехника: метод. указ. к самост. изуч. темы «Реальные газы. водяной пар» для обуч.направл подг.: 13.03.03 Энергетическое машиностроение, 15.03.02 Технологические машины и оборудование, 19.03.04 Технология продукции и организация общественного

питания, 19.03.03 Продукты питания животного происхождения, 19.03.02 Продукты питания из растительного сырья, 21.05.04 Горное дело очн. и заоч. форм обучения / В.В. Карнаух, А.Н. Лебедев; Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского, каф. холод.и торг. техники, Донец. нац. техн. ун-т, каф. пром. теплоэнерг. — Донецк: ДонНУЭТ-ДонНТУ, 2023. — 36 с.

- 6. Карнаух, В. В. Теплотехника [ Электронный ресурс ] : профиль «Холодильные машины и установки», 19.03.04 «Технология продукции и организации общественного питания», образоват. уровня бакалавриат, оч. и заоч. форм обучения : метод. указания для выполнения лабораторных работ для студентов направлений подготовки 15.03.02 «Технологические машины и оборуд.», профиль «Оборуд. перераб. и пищ. пр-в», 13.03.03 «Энергетическое машиностроение» / В. В. Карнаух, Ю. В. Пьянкова ; М-во образования и науки ДНР, ГО ВПО "Донец. нац. ун-т экономики и торговли им. Михаила Туган-Барановского", Каф. холодильной и торговой техники . Донецк : ДонНУЭТ, 2018 . Локал. компьютер сеть НБ ДонНУЭТ.
- 7. Карнаух, В.В. Кондиционирование воздуха [электр.ресурс]: консп.лекц. для студ. напр. подг. 13.03.03 «Энергетическое машиностроение» (профиль «Холодильные машины и установки»), 15.03.02 «Технологические машины и оборудование» (профиль «Оборудование перерабатывающих и пищевых и производств»), образовательного уровня бакалавриат, очной и заочной форм обучения/ В.В.Карнаух, Донецк: ГО ВПО «ДонНУЭТ», 2019. 90 с.

#### 15. ИНФОРМАЦИОННЫЕ РЕСУРСЫ

- 1. Автоматизированная библиотечная информационная система UNILIB [Электронный ресурс] Версия 1.100. Электрон. дан. [Донецк, 1999- ]. Локал. сеть Науч. б-ки ГО ВПО Донец. нац. ун-та экономики и торговли им. М. Туган-Барановского. Систем. требования: ПК с процессором ; Windows ; транспорт. протоколы TCP/IP и IPX/SPX в ред. Місгоsoft ; мышь. Загл. с экрана.
- 2. IPRbooks: Электронно-библиотечная система [Электронный ресурс] : [«АЙ Пи Эр Медиа»] / [ООО «Ай Пи Эр Медиа»]. Электрон. текстовые, табл. и граф. дан. Саратов, [2018]. Режим доступа: http://www.iprbookshop.ru. Загл. с экрана.
- 3. Elibrary.ru [Электронный ресурс] : науч. электрон. б-ка / ООО Науч. электрон. б-ка. Электрон. текстовые. и табл. дан. [Москва] : ООО Науч. электрон. б-ка., 2000- .– Режим доступа : https://elibrary.ru. Загл. с экрана.
- 4. Научная электронная библиотека «КиберЛенинка» [Электронный ресурс] / [ООО «Итеос»; Е. Кисляк, Д. Семячкин, М. Сергеев]. Электрон. текстовые дан. [Москва: ООО «Итеос», 2012-]. Режим доступа: http://cyberleninka.ru. Загл. с экрана.
  - 5. Национальная Электронная Библиотека.
- 6. «Полпред Справочники» [Электронный ресурс] : электрон. б-ка / [База данных экономики и права]. Электрон. текстовые дан. [Москва : ООО «Полпред Справочники», 2010-]. Режим доступа : https://polpred.com. Загл. с экрана.
- 7. Book on lime : Электронно-библиотечная система [Электронный ресурс] : ООО «Книжный дом университета». Электрон. текстовые дан. Москва, 2017. Режим доступа :https://bookonlime.ru.— Загл. с экрана.
- 8. Университетская библиотека ONLINE : Электронно-библиотечная система [Электронный ресурс] : ООО «Директ-Медиа». Электрон. текстовые дан. [Москва], 2001. Режим доступа : https://biblioclub.ru. Загл. с экрана.
- 9. Электронный каталог Научной библиотеки Донецкого национального университета экономики и торговли имени Михаила Туган-Барановского [Электронный ресурс] / НБ ДонНУЭТ. Электрон. дан. [Донецк, 1999-]. Режим доступа: http://catalog.donnuet.education Загл. с экрана.

#### 16. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лекции-презентации, представленные в компьютерной программе Power Point: «Теплоемкость идеальных газов», «Реальные газы», «Теплопроводность», «Классификация теплообменных аппаратов», «Теплоотдача» Компьютеризированные мини-фильмы на тему «Классификация и принцип работы ДВС», «Работа теплового насоса», «Принцип работы холодильника», «Принцип работы солнечных коллекторов», демонстрируемых на плазменной панели.

Комплект фазовых диаграмм *I-s, t-d, t-d*.

Модель двигателя внутреннего сгорания.

Модель автономного кондиционера. Действующая модель сплит-системы. Методические разработки по разделам курса (название в разделе "Дополнительная учебнометодическая литература"). Лабораторные стенды по определению коэффициентов теплопроводности, теплоотдачи и теплопередачи.

Дистанционный курс в оболочке Moodle.

- 1. Лекция на канале YOUTUBE «Дистанционное обучение ДонНУЭТ» по теме влажного воздуха, ссылка: https://www.youtube.com/watch?v=ouPU6W5MBi0&t=47s
- 2. Лекция на канале YOUTUBE «Дистанционное обучение ДонНУЭТ» по теме холодильные агенты, Режим доступа: https://www.youtube.com/watch?v=VC4xrWazdpI&t=114s
- 3. Лекция на канале YOUTUBE «Дистанционное обучение ДонНУЭТ» по теме «Фазовые диаграммы реальных газов» Режим доступа: https://www.youtube.com/watch?v=ZyZvM5nQknA&t=102s

17. КАДРОВОЕ ОБЕСПЕЧЕНИЕ

| 17. КАДІ О       | вок ореспель                  | FILKII        |                |                                               |
|------------------|-------------------------------|---------------|----------------|-----------------------------------------------|
| Фамилия, имя,    | Условия                       | Должность,    | Уровень        | Сведения о дополнительном                     |
| отчества         | привлечения                   | ученая        | образования,   | профессиональном                              |
|                  | (по основному                 | степень,      | наименование   | образовании*                                  |
|                  | месту работы,                 | ученое звание | специальности, |                                               |
|                  | на условиях                   |               | направления    |                                               |
|                  | внутреннего/                  |               | подготовки,    |                                               |
|                  | внешнего                      |               | наименование   |                                               |
|                  | совместительства;             |               | присвоенной    |                                               |
|                  | на условиях                   |               | квалификации   |                                               |
|                  | договора                      |               |                |                                               |
|                  | гражданско-                   |               |                |                                               |
|                  | правового<br>характера (далее |               |                |                                               |
|                  | – договор ГПX)                |               |                |                                               |
|                  | — договор I IIA)              |               |                | 1 Contribution of the Waltstand               |
|                  |                               |               |                | 1. Сертификат о прохождении очного повышения  |
|                  |                               |               |                | очного повышения<br>квалификации по программе |
|                  |                               |               |                | «Энергомашиностро-ение»                       |
|                  |                               |               |                | (объем 36 час.) в институте                   |
|                  |                               |               |                | двигателей и энергетических                   |
|                  |                               |               |                | установок ФГАОУВО                             |
|                  |                               |               |                | «Самарский национальный                       |
|                  |                               |               |                | исследовательский                             |
|                  |                               | Должность-    | Высшее,        | университет имени академика                   |
|                  |                               | профессор     | оборудование   | С.П.Королева»,                                |
|                  |                               | кафедры       | перерабатыва   | г. Самара) с 18 по 29 апреля                  |
|                  |                               | холодильной   |                | 2022г.                                        |
|                  |                               | и торговой    | пищевых        | 2. Свидетельство о                            |
|                  |                               | техники       | производств,   | повышении квалификации №                      |
|                  |                               | имени В.В.    | инженер-       | 771802829972 от 27.05.2022г.                  |
|                  |                               | Осокина,      | механик,       | «Работа в электронной                         |
|                  |                               | доктор        | диплом         | информационно-                                |
|                  |                               | технических   | доктора        | образовательной среде»                        |
|                  |                               | наук, ученое  | технических    | ФГБОУВО «Российский                           |
| Карнаух Виктория |                               | звание –      | наук           | экономический университет                     |
| Викторовна       | месту работы                  | доцент        | ДОК №005148    | имени Г.В.Плеханова»,                         |
|                  |                               |               |                | г. Москва;                                    |
|                  |                               |               |                | 3. Свидетельство о                            |
|                  |                               |               |                | повышении квалификации №                      |
|                  |                               |               |                | 771802829900 от 27.05.2022г.                  |
|                  |                               |               |                | «Цифровая трансформация                       |
|                  |                               |               |                | управления» ФГБОУВО                           |
|                  |                               |               |                | «Российский экономический                     |
|                  |                               |               |                | университет имени                             |
|                  |                               |               |                | Г.В.Плеханова»,                               |
|                  |                               |               |                | г. Москва.                                    |
|                  |                               |               |                | 4. Удостоверение о                            |
|                  |                               |               |                | повышении квалификации №                      |
|                  |                               |               |                | 612400031805 от 09.06.2023г.                  |
|                  |                               |               |                | «Организационно-<br>методические аспекты      |
|                  |                               |               |                |                                               |
|                  |                               |               |                | разработки и реализации                       |
|                  |                               |               |                | программ высшего образования по               |
|                  |                               |               |                | образования по направлениям подготовки        |
|                  |                               |               |                | физико-технические науки и                    |
|                  |                               |               |                | физико-технические науки и                    |

|             | T            |               | I            |                                                    |
|-------------|--------------|---------------|--------------|----------------------------------------------------|
|             |              |               |              | технологии» ФГБОУВО                                |
|             |              |               |              | «Донской государственный                           |
|             |              |               |              | технический университет», г.                       |
|             |              |               |              | Ростов-на-Дону.                                    |
|             |              |               |              | 5. Удостоверение №                                 |
|             |              |               |              | 612400044003 о повышении                           |
|             |              |               |              | квалификации ДГТУ                                  |
|             |              |               |              | «Научно-технологическое                            |
|             |              |               |              | развитие РФ в области АПК и                        |
|             |              |               |              | машиностроения» с 17-                              |
|             |              |               |              | 19.09.2024г. ;                                     |
|             |              |               |              | 6. Удостоверение №                                 |
|             |              |               |              | 7220324004406 о повышении                          |
|             |              |               |              |                                                    |
|             |              |               |              | квалификации Тюменский                             |
|             |              |               |              | гос.университет «Методика                          |
|             |              |               |              | антикоррупционного                                 |
|             |              |               |              | просвещения и воспитания в                         |
|             |              |               |              | организациях высшего                               |
|             |              |               |              | образования;                                       |
|             |              |               |              | выписка из протокола                               |
|             |              |               |              | заседания кафедры № 5 от                           |
|             |              |               |              | 14.10.2024 о внедрении                             |
|             |              |               |              | результатов в учебный                              |
|             |              |               |              | процесс                                            |
|             |              | Должность –   | Высшее       | . ГО ВПО «ДонНУЭТ имени                            |
|             |              | старший       | Донецкий     | Михаила Туган-                                     |
|             |              | •             | национальный | 1                                                  |
|             |              | преподаватель |              |                                                    |
|             |              |               | университет  | ЦДПО «Деловой русский язык                         |
|             |              |               |              | и культура речи», объем 70                         |
|             |              |               | торговли     | час. Сертификат о повышении                        |
|             |              |               | имени        | квалификации № 423/20 от                           |
|             |              |               | Михаила      | 25.12.2020г.                                       |
|             |              |               | Туган-       | 2. ГО ВПО «ДонНУЭТ имени                           |
|             |              |               |              | Михаила Туган-                                     |
|             |              |               | 2018 г.,     | Барановского», «Школа                              |
|             |              |               |              | педагогического мастерства»,                       |
|             |              |               | оборудованию | объем 20 час. Сертификат о                         |
|             |              |               | перерабатыва | повышении квалификации №                           |
|             |              |               |              | 431 от 25.09.2021г                                 |
|             |              |               | пищевых      | 3. Удостоверение о                                 |
| Байда Борис | -            |               | производств, | повышении квалификации                             |
| Юрьевич     | месту работы |               | проповодотв, | №1-15367 «Актуальные                               |
|             |              |               |              | J                                                  |
|             |              |               |              | вопросы преподавания в образовательных учреждениях |
|             |              |               |              |                                                    |
|             |              |               |              | высшего образования:                               |
|             |              |               |              | нормативно-правовое,                               |
|             |              |               |              | психолого-педагогическое и                         |
|             |              |               |              | методическое                                       |
|             |              |               |              | сопровождение», 24 часа,                           |
|             |              |               |              | ФГБОУ ВО Донской                                   |
|             |              |               |              | государственный технический                        |
|             |              |               |              | университет, г. Ростов-на-                         |
|             |              |               |              | Дону, 2023г.                                       |
|             |              |               |              | 4. Удостоверение о                                 |
|             |              |               |              | повышении квалификации                             |
|             |              |               |              | №1-25180 «Система высшего                          |
|             |              |               |              | образования как ключевой                           |
|             | <u> </u>     |               | l            | ооразования как ключевои                           |

| фактор научно-                |
|-------------------------------|
| технологического развития» 24 |
| часа, ФГБОУ ВО Донской        |
| государственный технический   |
| университет, г. Ростов-на-    |
| Дону, 2024г.                  |
| 5. Удостоверение о            |
| повышении квалификации №      |
| 7220324003479 по              |
| дополнительной                |
| профессиональной программе    |
| «Методика                     |
| антикоррупционного            |
| просвещения и воспитания в    |
| организациях высшего          |
| образования (для              |
| педагогических работников)»   |
| 18 часов, ФГБОУ ВО            |
| ТЮМГУ, г. Тюмень, 2024г.      |